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by
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The University of Wisconsin-Milwaukee, 1998

Under the Supervision of Professor Tsong-how Chang

ABSTRACT

The Shewhart control charts, developed by Walter A. Shewhart in the 1920’s are
for the detection of process changes in a univariate process. When a process is monitored
by two or more quality characteristics, the use of Shewhart control charts can incorrectly
identify a process in or out of control. Thus, it is essential to have some control charts
that are capable of controlling several quality characteristics simultaneously. In 1947,
Hotelling introduced the T2 -statistic to monitor a process with two correlated variables
for bombsight tests. Ever since, a great number of methods have been developed either
as a supplement to T? chart to extract more detailed information contained in the
sample T2, or for the design of entirely different schemes for multivariate control.
These methods, however, are not widely used because they are not sufficiently

informative to be useful in practice.
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In this research, a new method for multivariate process control, called major
element control charts, is developed to detect any possible changes and identify their
nature of change in each of the process means under assumed stability in the associated
variances and covariances. The major element control charts for a p-variate process are
consisted of p individual control charts one for each of the p major elements. Each major

element is a statistical function of an element on the major diagonal of an inverted
px psample variance-covariance matrix, and follows a y’distribution. The control
limits for the major elements can be easily calculated using the y? distribution at a
selected significant level. The construction and performance of the major element
control charts are discussed and evaluated with simulated trivariate normal process data.
Demonstrated by simulation data of various processes, the control charts for major
elements are not only effective, but also informative for the control of multivariate
Gaussian process means. A step-by-step procedure for actual application is recommended
for the set-up and interpretation of the major element control charts. Issues related to
sampling strategy, chart interpretation, and the stability of process variances and

covariances are also discussed with some suggestions.
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Chapter 1

INTRODUCTION

One half century ago, Harold Hotelling (1947) introduced the use of a T2 statistic
for multivariate process control. Although statistically efficient and effective, the T2
control chart has not been widely used in practice. One major drawback of a T2 chart is
its inability to reveal the specific nature of the underlying process changes whenever the
chart shows out of control. Information regarding any specific causes is extremely
valuable to the process engineer in his/her investigation and diagnostic analysis for

corrective actions. Such was recognized early on by many statisticians.

Since the mid-sixties, a great number of methods have been developed either as a
supplementary analysis to extract more detailed information contained in the sample 77,
or for the design of entirely different schemes for multivariate control. These research
efforts of the last three decades, however, have not significantly advanced the
multivariate control technology to the point that would satisfy the engineers to actually
apply it in their work. Recently, the rapid growth of data-acquisition technology and
the use of online computer for process monitoring have rekindled the interest in

multivariate process control. The new interest, however, demands a method that is not
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only effective in detecting out-of-controls, but also informative and easily understandable

for routine applications in multivariate manufacturing process control.

1.1 Motivation for Research

Unlike in univariate controls by, for example, Shewhart X and R charts where
any out-of-control signal itself also indicates the direction of change in the process
parameter being monitored, the T? for multivariate control is a statistic that summarizes
all the sample variation from each of the variables in the group. Whether an out-of-

control may have been caused by changes in one or more of the variables with shifts in
the means, the variances, and/or covariances, they all tend to increase the sample T*

values to exceed a control limit. This makes T statistic highly efficient in signaling out-
of-controls, but utterly helpless in the attempt to diagnose the nature of the possible

assignable causes.

The methods that have been developed in recent years either as a supplement to a
T? chart or as a separate multivariate analysis of the data after an out-ofcontrol signal is
identified are all designed to learn more about why a sample T? goes out of control.

These include the use of principal components, decomposition of T*, and additional uni-

variate control charts. There are also some new control charts that chart cumulative

residuals from regression, sample principal components and other statistics, without 7.

Nevertheless, there remains a definite need of a multivariate process control procedure
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that is efficient, effective and informative. More specifically, Hubbele (1989) states that a

multivariate control procedure should possess the following capabilities:

1. Correct (and rapid) detection of an out-of-control state.

2. Identification of the variables, among the correlated variables, that caused the

problem.

3. Determination of the magnitude and direction of the adjustments required to

bring the process back to control.

1.2 Research Objectives

This research is aimed at developing a method of charting time-ordered,
independent samples of data for the control of a multivariate Gaussian process with the
capability listed above. Specifically, the primary objective is to develop a multivariate
control scheme for the detection and identification of possible changes in each of the

process means, under assumed stability in the associated variance and covariances.

1.3 Research Results

The proposed method consists of a set of p control charts, called major element
control charts, one for each of the p correlated normal random variables. The p major

elements are statistical functions of the elements on the major diagonal of an inverted
1 1 ix of si Si h le major el foll 2
sample covariance matrix of size px p. Since each sample major element follows a %

distribution, control limits can be easily calculated at a given significance level. Each of
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the p control charts is reviewed for signals of out-of-control whenever a sample becomes
available. Jointly, all observable out-of-control signals from the p chart are analyzed to
determine the specific nature of the shifts in process means. By computer simulation of a
trivariate normal process, these major element control charts appear to be very effective
and informative as originally expected. When compared against several recently
developed multivariate control charts, again by simulated trivariate process data, the
proposed major element charts show improvements in their uniqueness and sensitivity of
out-of-control signals. Finally, the major element control charts are not only capable of
displaying signals of each out-of<ontrol variable, but also its direction of shift in the

mearn.

1.4 An Outline

Chapter 2 presents a review of important and relevant literature in the
development of multivariate control charts over the past 50 years. It is noted that most
of the developments are in the control of means with an assumed or implied constant

variance-covariance structure in control.

The underlying methodology of the proposed control charts for statistical control
of the means of a multivariate Gaussian process is presented in Chapter 3. The
methodology is primarily based on the unconditional decomposition of the quadratic
form, Q, of a multivariate normal distribution. Each of the first p sample major

elements is expected to have a bias when its corresponding process mean is being shifted.
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The proposed methodology is evaluated in Chapter 4 by using the simulated
process sample data. The structures of data simulation are designed to examine the
robustness of the proposed control charts when they are applied to monitor the processes
of all kinds. Additionally, a step-by-step construction procedure of the major element

control charts is also presented in this chapter.

Chapter 5 presents a comparative study among several well-known multivariate
process control techniques and the newly developed major element control chart. It
reveals the strength and weakness of each technique based on its ability in displaying the

distributional out-of-control patterns.

A five-phase application procedure for the major element control charts is
outlined in Chapter 6. The five phases include: define the process, collect the data,
analyze the dara, interpret and identify out-of-control signals, and formulate, and
implement follow up actions. Chapter 7 is a summary of the methodology, and a

discussion of areas for the future research.
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Chapter 2

LITERATURE REVIEW

Multivariate process control techniques have been around, ever since Hotelling
applied multivariate control analysis on bombsight data in 1947. The multivariate
control chart was not used widely like Shewhart Control Chart until recently because of
the unavailability of fast computing technology and the complexity of implementing
procedure. During past ten to fifteen years, many statisticians and quality engineers put
their efforts either to develop new multivariate process control techniques, or to improve
current available techniques. The objectives of these research efforts primarily were to
provide more information about the out-ofcontrol states in a process that can assist
engineers to easily identify the assignable causes and to formulate correct actions more
efficiently. Much of this is the result of the growth of advanced information technology,

and the understanding of the relationship among quality characteristics of the process.

A literature review of the development of control charts for a multivariate
Gaussian process is given focusing on their applications and performance in a
manufacturing environment. In Section 2.1, the control charts designed to monitor
multivariate process means are discussed. In most cases, the multivariate control charts
for the process means are constructed under the assumption that the process stability in

associated process variances and covariances is in-control. Several currently available
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multivariate control procedures for checking process variability are reviewed in Section
2.2. In the last section, several important issues of the development of multivariate

process control charts are discussed.

2.1 Control Charts for Multivariate Mean

Research efforts in the development of the process control for multivariate means

are directed in three main streams. The first stream makes its efforts of improving the

performance of T*control charts by improving the sensitivity of control limits and
obtaining better estimations of the process parameters. The second stream acts on

designing the supplementary charts to enhance the interpretation of out-of-control
signals that are detected by T? control chart. The last stream of the research efforts
intend to develop multivariate statistical process control charts that are able to provide
diagnostic information about the change in the process means without depending on
T*control chart to signal the out-of-control states. In this section, the fundamentals of
traditional T? control chart will be reviewed first. Then, each of the three main streams

1s discussed.

2.1.1 T? Control Chart (Hotelling, 1947)

The T? statistics derived by Hotelling at 1947, which is used for the overall
control of the process, is a generalization of the t-test, and for single observation, this

takes the form:
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T = (X~ ) S (X~ o), @1

where X is a column vector, and X and p, are the process variance-covariance matrix and

process means, respectively. Derived by Hotelling, T2 is a statistic related to F

distribution with adjustment factor involving the number of samples (£) and number of

variables (p) as T, =k_k—§+1F sdi-pe1a » Which is used to set up the upper control limit

for T?at the significant level of 100a%. If the number of samples is large enough, T2

may be approximated by the y? distribution with p degrees of freedom.

Although T? control charts are statistically efficient and simple, they are not
very informative for diagnostic analysis of out-of-control signals as to the nature of their
assignable causes. The 7 control chart also suffers three major drawbacks. It loses its
optimality property against more specific shifts in mean, it confounds location shifts
with scale shifts, and its signals are not associated with any particular shift or variable but
must be diagnosed after the fact (Hawkins, 1991). In addition, Matrangelo, Runger, and
Montgomery (1996) have also pointed out that Hotelling 7 is based entirely on the
most recent observations and consequently the procedure signals only when a relatively

large shift in the mean vector occurs.

2.1.2 Improving T Chart

Alr (1984) introduced two-phase procedure to apply Tstatistics in controlling

the multivariate process means. Phase I consists of using the charts for retrospectively
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testing if the process is in control. Control charts in Phase II are used to monitor the
future process. To improve the capability of analyzing the data in Phase I for
determining the status of a process, Wierda (1994) and Sullivan et al (1996) both evaluate

the methods that are commonly used to estimate the process variance~covariance matrix.

When only one observation of each sample is collected in Phase I, all the
observations are pooled to estimate the mean vectors and covariance matrix. Sullivan
and Woodall (1996) have found that T control procedure is not effective in detecting a
shift in the mean vector because the covariance matrix is badly estimated. To improve
the estimate of the process variance-covariance matrix for multivariate individual
observations, Sullivan et al. (1996) suggest using concept of moving range method in the
univariate case. The procedure uses the vector difference between successive

observations to estimate the in-control covariance matrix for the process.

For a process with multiple observations of each sample, average of sample
varlance-covariance matrices is used to estimate the process variance-covariance matrix.
This estimator is a reflection of the ‘within sample dispersion’. It can not be affected by
special causes of variation, which is an appropriate application for detecting the shifts in
the mean vectors. To apply this method, the relationship among sample size (1), number

of samples, and the number of variable has to satisfy k(n—1)> p. (Wierda, 1994)

Lowery et al. (1995) summarized a procedure to establish the most efficient

control limits for T2 control chart at Phases II, which assumed that trial control limits

of Phase I for use in online statistical process control, has been established. The upper
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control limits should be calculated exactly as a function of F distribution. Using

individual observation at Phase II, £ and p, are usually estimated by the pooled sample
variance-covariance matrix, S, and average of all observation vectors, X. The T?
statistics used instead of Eq. 2.1 is T2 =(X~-X)"S™(X-X) with the exact upper control

limits as —_p(k+1)(k—l)F

k—p)  =rkor that were defined by Ryan (1989). However, Jackson

(1985) suggests that for large £ (k> 100), the UCL of plk-1) F, ,4-, would be a fair

(k-p)

approximation.

For charts constructed using sample size, 7> 1, the average of sample variance-

covariance (S) and average of sample mean vector (X) are used to estimate £ and pt
. . 2 .o . . . = <5 T——l - =
respectively. The Hotelling 7* statistics in Phase II is defined as rz(X—X) S (X—X),

and the upper control limit is defined as UCL = M——I)F Number of

kn—k—p+1 @Ak
samples (k) and the sample size () play an important role in the procedure of estimating
the control limits. For detail discussion, Tracy et al. (1992) had discussed how the
number of samples affects the determination of control limits for the individual
observation case. In addition, Lowry et al (1995) had shown in their evaluations of the
effects of the number of samples when interacted with two different levels of sample size

and six levels of number of variables.
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11

2.1.3 Supplementary Control Chart for 7* Control Chart

One of the major drawbacks of the T control chart procedure is that it does not
directly provide the diagnostic information of the out-of-control signals such as which
variable causes the problems, and how the variable has been changed. In order to address
appropriately these drawbacks of T2 control chart, a number of methods have been
proposed in the past twenty years. The similarity of these procedures is that the first
step of them requires checking the out-of<ontrol signals or evaluating the overall
performance of T2 control chart. Then, each of these methods will be applied to

interpret the status of the process according to the signals given by T statistics.

One of these procedures, named Multivariate Profile (MP) charts, is proposed by
Fuch and Benjamoni (1994). Its concept is relatively simple. MP chart plots a set of bar
chart along with T?statistics. The bar charts consist of a horizontal base line that is
plotted at the value of 7? and p bars for a p-variate process. The size of each bar is
determined by the difference between sample mean and the process mean, and the
standard deviation of each variable. To interpret the MP chart, first find the highest
T*? value, and then paint each bar with different color. The gray color is the variable that
exceeds two standard deviations, and the black bar indicates this variable exceeds three

standard deviations.

Kourti and McGregor (1996) provides a set of plots based on Principal

Component Analysis to detect the variables’ contribution to the out-of-control signal
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which was identified from the T2 control chart. There are three steps to establish the

charts.

1. Detect the out-of-control signal from a sample observation vector, X, whose

T? value is above the control limit.

2. Check normalized scores of the sample observation, X, based upon Principal
Components Analysis, find scores with highest values. (Bonferroni limits

could be used on the score chart as rough guides.)

3. Calculate the variable contributions for these high scores; investigate the

variables with high contribution.

Based on the total contribution of the variables, one can point out a variable or a

group of variables that caused the out-of<control signal in T2 control charts. These

variables need to be investigated to assign the causes.

Many researchers have suggested using decomposition techniques for identifying

the particular subset of quality characteristics that cause an out-of-control signal. These
procedures basically decompose the T statistics into independent parts, each of which is
based on a subset of the p quality characteristics with similar properties. The
decomposed parts are known as T2 variates that are used to determine which variables

are causing out-of-control states.

This approach first is brought up by Murphy (1987) to partition the p quality

characteristics into two subsets. One of the two subsets- must be the subset that is
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intuitively suspected to be directly related to the cause of the out-of-control signal. There
are a couple of disadvantages for this method. First, the number of possible selections of
each subset is large for the process with large number of variables, and the second, choice
of the subset depends on user’s intuition, which introduces the risk of misidentifying the

true assignable causes.

Mason, Tracy, and Yong (1995, 1997) decompose T'* of a p-variate process into p
independent components, each of which provides information on the variables that
significantly contribute to an out-of-control signal. Wierda (1994) suggests a step-down
procedure that is based on the priori knowledge of the ordering among subsets of the
variables. According to the ordering, the procedure partitions the mean vector into ¢
sub-vectors and correspondingly g sub-hypotheses to test that one of the sub-vectors of
the mean does not shift. For each of the g sub-hypotheses, a control chart is plotted. Itis
not necessary to examine all variables while applying this approach. However, it is very

difficult to select an appropriate order of all the variables.

Timm (1996) proposed an alternative step-down method to use finite intersection
tests (FIT). Both Wierda’s step-down procedure and the FIT procedure are based on
conditional distributions to make a choice of ordering the original variables. Timm
(1996) states that the FIT method is uniformly and more powerful than the step-down

procedure.
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2.1.4 Multivariate Control Charts Based on Data Transformation Techniques

Several important data transformation techniques have been used to develop new
multivariate control charts for detecting the mean shifts. The principal component
analysis and regression-adjustment of process variables are two major techniques that
have been proposed in the literature and they do not rely on T statistic to signal the
out-of-control states. In this section, both the principal component (PC) analysis and

regression-adjustment techniques are discussed in a great length.

2.1.4.1 Principal Component Charts

Jackson (1985) proposed and demonstrated the details of the transformation of
the original variables into Principal Components (PC) and monitoring these new
orthogonal variables with the original variable simultaneously on control charts. The
applications of Jackson’s proposal had the following potential problems. The control
charts of the transformed variables are a set of univariate control charts; each principal
component is a combination of each of the original variables. While the out-of-control
signals are identified from the sample data of principal components, it is difficult to
interpret which original variables cause the signals. Unless the application can either
establish a set of pattern to identify the shifts in process means, or set up another set of
charts to help identify the contribution of each original variable such as Jackson’s
original proposal or the normalized score plots proposed by Kourti (1996). Otherwise,

the principal components analysis on multivariate process control is difficult to apply.
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Chang (1991) have found a unique pattern for monitoring a bivariate process by
plotting the Principal Components (PC) of the original sample data. Design of this
procedure seems to have an advantage over T? control chart. The patterns of principal
components based on the process mean shifts are summarized from the simulated data
provide the information on the sources of assignable causes (Chang, 1991). The

distribution pattern for the bivariate process control is as shown in Figure 2.1.

————
- —_

Bl ) GLED) L) CLHD) GL-D @D CL-D (LO)

®%X) Q) CLH) L0 GLHD CLeD) @) G- (+,0)

Mean Shifts (h;, h,)

Figure 2.1 Distribution Patterns of Out-Of-Control Signals for Bivaraite
Control (Reproduced from Chang’s 1991 paper)

In Chang’s (1991) study, it is also found to extract a unique pattern for
multivariate process control chart by using Principal Components becomes too
complicate as the number of variables gets large. Although the sample principal
components that are calculated from a simulated trivariate process sample data do show a
distributional pattern, which the patterns do not agree with twenty-six out-of-control

states based on simulated shift combination directly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

2.1.4.2 Regression Adjustment of Variables

Hawkins (1991, 1993) has suggested that regression adjustment of variables may
be an effective alternative to classical multivariate control chart. Hawkins combined
regression control chart (Mandel, 1969), with a result due to Healy (1987) and proposed

to regress the variable X, on a subset of (p-1) variables X, such that /#m, depending on

the natural order of the process. Let H, be the /* variable of H, where

H = diagldiag(z " )= (X - ,). 2.2)

H, is the regression residual when variable / is regressed on all other variables,

standardized by unit variance. This can be used to test the null hypothesis that the *
component of the mean vector did not shift. To chart the H value of each variable,
Hawkins (1991) proposed to make a univariate CuSum chart. For a p-variate process, p

CuSum charts are plotted.

In order to evaluate the performance of the regression-adjusted sample data,
Hawkins plots the simulated H, on both the CuSum chart and traditional X — R char.

The results turn out to be that both charts can detect the simulated change. Obviously,

it 1s possible to use a classical control chart for the H, instead of a CuSum control chart.

It also can be concluded that Hawkins’s method performed well if the shifts occurred in
a single component, or in a pair of lower correlated components. (Wierda, 1994) Besides,
Hawkins does not show how sensitive the method would be if change in the standard

deviation and shift in mean both occurred in the same variable.
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2.1.5 Multivariate Techniques for Detecting Small Shifts

Because the design of T control chart is based on the most recent observations,
it becomes relatively insensitive to small and moderate shifts in mean vector. Several
researches extend the concepts that are used in the univariate case such as the CuSum
Control chart and Exponentially Weighted Moving Average (EWMA) procedure to
improve the traditional T? control charts to detect the small shifts. The advantages of
these procedures are that they not only use the most recent observations, but also use the

observations collected in the past.

Two major multivariate CuSum control charts are developed based on the
sequential probability ratio test (SPRT) by Healy (1987) and Alwan (1986). Essentially
both methods are the extension of the univariate CuSum approach, however, Alwan’s

procedure is not based on the sequence of original variable, but rather on a sequence of

transformed T?variables.

Lowry et al. (1992) proposed Multivariate Exponentially Weighted Moving
Average (MEWMA) control chart which is a natural extension of univariate EWMA
control procedure. Both multivariate CuSum and MEWMA methods have been shown
that they are relatively sensitive to the small shift in the multivariate process means,
however, they still cannot provide the information regarding the nature of the change.
In addition, a design procedure for those control chart and guidance for chosen

parameters are also needed for practical applications.
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2.2 Control Charts for Multivariate Process Variability

As discussed earlier, it is not sufficient to monitor only the means of the quality
characteristics associated with the product, but measures of the process variability should
be controlled as well. In the univariate case, the sample range is often used as a measure
of process dispersion, thus the R-chart is the established control chart to monitor
dispersion of the process. The variability of a multivariate process is summarized by the
variance-covariance matrix, X,,. An analogous procedure would be very much helpful
to monitor the dispersion of a multivariate normal process. However, often problems
are encountered within the industrial realm where it is essential to examine possible

change in the relationship among related variables.

In many instances, the change in process variances and covariances went
undetected while the correlation between two variables changed. Although checking the
process variability is such a critical issues for the multivariate process control,
unfortunately, only very limited research efforts have been devoted on developing the
multivariate control charts for controlling process dispersion. In this section, most of the

available control charts for multivariate process variability will be discussed.

2.2.1 Control Charts for S

In extension of the idea of range control chart, Alt (1985) proposes two control
charts to monitor process variability. The first control chart is a direct extension of the

univariate §* control chart. The procedure is based on the repeated tests of significance
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of the hypothesis that the sample variance-covariance matrix, S, is equal to a specific
population variance-covariance matrix, 2. To apply this approach, the following statistic

for the #* sample is plotted on the control chart

W, =—pn+ pnin(n)—n ln(%} + rr(Z“ 4, ) , 2.3)

where 4, =(n—1)S,, S, is the sample variance-covariance matrix for sample 7, i=
1, 2,...,n, and ¢r is the trace operator. If the value of W, plots above the upper control

limit UCL = % , p+1y2» the process is identified as out of control. The second control

chart is constructed to monitor the sample generalized variance-covariance, using the

determinant of S, |S|. The method treats the determinant of sample variance-covariance,
5], as a variable, and use the mean and variance of |§| to construct the control limits.

Let £(S]) and V(S]) be the mean and variance of |5].

Use the property that the probability distribution of most [9] is contained within

the interval of E(S)£3,/V(S]) to construct the control limits of |§|. In addition, if the
variance-covariance matrix is estimated by sample variance-covariance matrix, [Z| should
be replaced by [S|/b which is an unbiased estimator of [Z| and &, is a constant

determined by sample size and number of variables. Furthermore, as part of this
procedure, Montgomery (1991) suggest that it will be a good idea to use univariate

control charts for variability in conjunction with the control charts for [§].
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Chang (1991) proposed to use logl§| in stead of [§], since it had been shown
theoretically that the statistic of [S| has more normality in its logarithm. To construct
control chart of logl§|, first, calculate the determinant of each sample variance-covariance

matrix for the in-control process. Then, find mean and variance of log§|. A control

chart with 100(1 — )% probability limits is constructed as log[SliZ%(Jv;;{logiS” ,

where log$| is the mean of log$S|, and Z,, is /2 percentage point of the standard

normal density.

In addition, Bonferroni confidence intervals are proposed to graphically interpret
and identify the nature of out-of-control conditions that do occur on the loglS| control
chart. A common problem with control charts developed using |§| or logl§] is that
different matrices can have the same determinants. For example, consider the three 3x3

variance covariance matrices:

256 1536 1080 576 0921 270 144 1.843 0.675
51 =[1536 144 1.613 ’SZ =|0921 023 0.604 ,53 =[1843 3686 1210
1.080 1.613 0.81 270 0.604 225 0.675 1210 0.563
Now, [S,|=[S,|=[S;|=0298, yet these three matrices convey considerably

different information about the process correlation among three variables and process
variability among the samples. Therefore, Alt and Smith (1988), and Montgomery
(1991) suggested that the appropriate univariate procedures to monitor the individual

variances are necessary while the control charts based on [§] are applied. Chang (1991)
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proposed a new chart, namely Z”, to monitor the change of process's correlation

coefficient along with the control chart of log$S| for controlling process variability. Here

Z” is a measure based on the Hotelling’s investigation of Fisher’s transformation of

correlation coefficient between two variables.

2.2.2 Generalized T2 Statistics

Another line of approach is due to Hotelling (1947) called Generalized T3

statistic. Jackson (1985, 1991) proposed to use three statistics available from Hotelling
T? to monitor the process means, variances and covariances simultaneously. Three

statistics are: 7., a measure of overall variability, T2, a measure of the distance between

the mean of sample observations and the target mean, and 7}, a generalized measure of
the dispersion of the sample around its own mean. Among them, T} of each sample is a

measure for controlling the dispersion of the process. The relationship among these

three statistics can be written as in Eq. 2.4.

T2 =T+ T} (2.4

Based on Jackson (1985), it suggests that 7}, and T} for multivariate process can
be used as average and range chart for the univariate case for statistical process control.
There are cases where, because of cost, time, the nature of the test or whatever, it is not
practical or possible to use averages for short-range process control. This is true whether

the control procedure is univariate or multivariate. However, in the multivariate case,
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the three T? statistics may be useful as summary statistics to evaluate the process
performance. It is relatively difficult to apply them as a chart to monitor the process

variability.

There have two main concerns of the proposed control chart reviewed in this
section. First, the statistics and/ or the control limits depend on the estimates of process
variance-covariance, however in general, the process variances and covariances are
unknown. Second, the control scheme for process variability only signaled the out-of-
control state without further information to present the nature of change in the process

variances and covariances.

Because of the similar concerns discussed above, Wierda (1994) presents and
evaluates four methods to test the hypothesis that an unknown process variance-
covariance matrix is constant in-control. The four methods include Likelihood Ratio
Test (LRT) statistics, the Nagao's test statistic, Quotient of the generalized variance, and
univariate test statistic. Furthermore, he also proposes a hierarchical procedure with
LRT testing that could signal the change in the variance-covariance matrix. The
complexity of Wierda's procedure might improve its performance if user understood
underlying statistics. It is still very far from the possibility of practical application even
though the high-speed computers are available. Indeed, the other methods mentioned in

this section are relatively simple and have easily understandable statistics.
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2.3 Some Issues on Multivariate Process Monitoring

e Dara transformation or standardization tend to lose potential important information

in the original data.

A lot of information will be lost or altered when the data transformation and
standardization are applied. We usually do not know what has been missed, and no one
really pay much attention to it. It is necessary to make sure the techniques can preserve
the information as much as possible. Moreover, we should make sure at least that the

information is not modified.

e Certain process data are inherently autocorrelated in time or in space, many,

however, are time independent

If process data are dependent on time, the data should be treated with time
concern. It is not easy to assure that a given process is always dependent on time.
Because any data collected from process, all of them can be fitted with time series model.
Then, one will try to use control chart with autocorrelation concern, which might be
totally misleading. When the data is modeled by time series, it is assumed that the
residuals are independent which might model the error into it. Because of the concerns,
many researchers focus on the process, which has timed autocorrelation concern that

only applied to process industry. (Montgomery et al., 1993).

e Most multivariate control charts for the process means heavily rely on two

assumptions. First, the sample data are always well behaved following a multivariate
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normal distribution. The second one assumes that the process variance-covariance
matrices of the samples are well maintained as a constant that can be estimated by the

sample data.

Most multivariate control scheme developed without even considering the
evaluation of the stability of a process. They assume that the multivariate process is
stable and in-control. However, to improve the current multivariate techniques for
process mean, one thing for sure needs to be emphasized on is to develop a effective,
efficient, and easy to apply multivariate control chart for checking the stability of a

process.

e Many techniques are developed to interpret the out-of-control signal that was
identified from T control chart. What if 7> misidentify the signal or it just simply

is not able to show the process mean has been shifted?

In a recent assessment of multivariate control charts, Mason et al. (1997) had
concluded that two aspects must be considered of evaluating the out-of-control signals
from T* control chart. First, the overall significance level of the simultaneous use of p-
univariate control chart must be calculated and is known to difficult to determine it.
Second, not necessary only one quality characteristic causes the out-of-control situation

at one time. Therefore, many other techniques are more efficient and effective than the

application of T control chart.
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Chapter 3

METHODOLOGY

This chapter presents the underlying methodology of the proposed control charts
for statistical control of the means of a multivariate Gaussian process. It is assumed that
the process variances and covariances are not subject to change or in statistical control.
The methodology itself is quite straight forward in that it is a decomposition of the
familiar quadratic form of a multivariate normal distribution, @ = (X —p)= (X —p), or
the classical Hotelling’s 7>. Unlike many of the earlier work with the 77 as discussed
in Chapter 2, this research proposes the use of a certain portion of the decomposed
elements of the quadratic form including the inverted variance associated with each

variable. These are to be called the major elements of Q. Since the Q is also a measure
of the distance between two vectors X and p, each major element of O containing
(X, —;) expresses the distribution of X, centered at p,. All the major elements of a p-

variate process are independent of each other; therefore, they can be analyzed

individually.

When applied for multivariate process control of the means, each such sample
major element serves as an indicator of the state of its mean independent of the states of

the other means. Together, the p sample major elements are capable of characterizing
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simultaneously the states of all the p means of a process. What follows in this chapter is
to propose a decomposition of the @ such that it allows for the selection of p
independent major elements, each of which follows a chi-square distribution with one
degree of freedom. Based on the y* distributions, control charts of sample major
elements, one for each of the p means, may be constructed for multivariate statistical
process control. Additionally, a complete set of distributional patterns of various out-of-

control signals of a trivariate process will be developed as an aid in chart interpretation.

This chapter is organized as follows. The multivariate normal distribution will be
reviewed in section 3.1. Section 3.2 will present the method of decomposition of a2 Q
and define the major and minor elements of a p-variate Gaussian process. Section 3.3
describes the estimation of process parameters from sample data and the calculation of
sample major elements. Section 3.4 presents the x> distribution for the sample major
elements, which provides the basis for the proposed control charts. In Section 3.5, the
expected sample distribution patterns of each major element control chart of a trivariate
Guassian process 1s developed with illustrations. It is also shown in this section that all
26 possible combinations of shifts in the three means have unique distributional out-of-

control signals to be displayed on the three major element control charts.

3.1 Multivariate Normal Distributions

The multivariate normal density function is a generalization of that of a

univariate normal with mean p and variance ¢,
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1 (=

f(x)=o-ﬂe "),—oo<x<oo (3.1

The term in the exponent of the univariate normal density function of Eq. 3.1

may be written as

(x;ujz =(e—pfo? ) (e 1) 62

which measures the squared distance from x to p in terms of the standard deviation.

For a p-variate normal process, Eq. 3.1 can be generalized to

1 Y x-p) B (x-p
f(X)_—_We—Z( ) ( ), -o<x, <o, [=12,...,p, (3.3)

where 1 is a px1 vector of the mean values of a normal random vector X and ™' is the

inverse of the variance-covariance matrix of X.

Sy On Cip c'' o' o'’
12 22 2p
o c o o c
12 2 2 _
= Fl,and =7 =| ",
G, Oy C cl? o?* c?

The symmetrical covariance matrix £ is positive definite, so the squared distance

from X to p is given by (Johnson and Wichern, 1992)

Q=X-p) = (X~u), (3.4)

which is also known as the quadratic form of a multivariate normal.
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3.2 Decomposition of A Quadratic Form

Suppose a process is characterized by a px1 random vector X'=[x,X,,...,X,]
following a p-variate normal distribution as defined in Eq. 3.3. The quadratic

form,(X —p) =7 (X —p) of Eq. 3.4, can be expressed as

{(x, -p, ) o' +(x, -p, )0 +---+(xi, -up)zo"”’ +

2[()(' -]“LIXXZ 'l"-z)c'l2 ""(xx ‘P-lxxs ‘P'z)cu +"'+(xp—t a9 Xxp ‘PP)U(P—n'p]}

or as

Q= g(Xz—uz)lc” +2i i(x,—uz)(xm-u,,.)c"", l,m=1,2,..., p; (3.5)

=1 m=l+1

which is a linear combination of two types of terms. The first type of terms in Eq. 3.5,
Z(x,—u, )20'" , 1s the sum of functions of squared distances from the means, one for
each X,. The second type of terms involves cross products of the distances between two

variables.

For control chart applications, it is important to employ the sample statistics that
are sensitive to any changes in the process parameter being monitored. In multivariate
process control, it is also desirable that each sample statistic to be charted is capable of
clearly reflecting one specific change in only one variable with no influence of changes in

other variables. It is seen in Eq. 3.5 that only the first type of terms appears to have the
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potential to provide the sensitivity uniquely for each of the p variables. The following

development of this research is based on this observation.

Now, the major and minor elements of a Q are defined as follows:

3.2.1 Major Elements

The p terms of the first type of elements in the distance function of Eq. 3.5 are

defined as major elements to be denoted by M, .

M, =(x,—p, ) c", 1=12,.,p. (3.6)

3.2.2 Minor Elements

The p(p - 1) cross-product terms of the second type in Eq. 3.5 are called the minor

elements to be denoted by M,, .

M, =0, -, Xx, -1, )™, Lm=12,..p,l=m. (3.7)

The value of a sample minor element M,, will change if either or both p; and p,,

are shifted to p, + Ay, and g, + Ay, . However, the value of major element M, will
change only when y, is shifted to p, + Ay, and will not be affected by any shifts in the
other p’s. Thus only the sample major elements need to be charted, one for each of the p

variables, to monitor each of the p process means. Being a squared distance between a

sample value from the mean, each sample major element should be a highly sensitive
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statistic in detecting a shift in the mean. It is reminded that such major element control

charts will be effective provided that the process covariance structure remains in

statistical control.

3.3 Sample Major Elements

In practical applications, the process mean vector | and covariance matrix £ are

generally unknown or unspecified, they are estimated respectively by a sample mean

vector X and a sample covariance matrix S.

Suppose that £ samples of size n each are collected from a process while it is in
statistical control. The j* observation of sample i on variable / is denoted as x;,. For the

* sample, its sample mean vector and sample variance-covariance matrix, respectively

denoted by X;and S, ,

X Sin Siz 7 S
— : Sita Siyy v S,
_ 2 | _ [y I g 2 i22 i2p [ ]
X,=| "= [%l..8=7 72 L =l (3.8)
Xi.p Si,lp S 2p Si,pp
are obtained by
n
lew | &
> = _ 1 o . B
X = P and s, = 1 (xw x,._,)(x,.jm x,.',,,) [lm=1, 2,..., p.

i
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Then, the process mean vector, |, and the process variance-covariance matrix,

k __ k
= in ZS,.
Z, may be estimated by X =-— and S=-=

p p =[s,.] p Tespectively. The inverse

matrix, S™', of the sample variance-covariance matrix S is calculated by

s =[s"],., = [(- 1y*" M] (3.9)

8|

where S, is the matrix obtained from S by deleting * row and m™ column and “| |”

is the determinant of a matrix.

Let the pxp population correlation matrix p be estimated by its corresponding
sample correlation matrix R, which may be obtained from the sample variance-

covariance matrix as follows:

i S12 Sip
\/Snsn \/suszz SuSpp 1 r, - ho
S S» S2p e Lo
R= =\ . . . ? .
\/Suszz \lszzszz $225 pp : : - (.10)
S. LY S. rlp hp 1
lp 2p /4
_\/Sllspp \/Snspp Vsppspp R

where the r,,’s are sample correlations between variable [ and m for [m=1,2,... p.

Now, let the pxp sample standard deviation matrix, v/ , be
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Jsa 0 0 0
0 s, 0 0
vi=| 0 0 - : (3.11)
P 0
i 0 0 0 S pp
Then, S can be obtained from V% and R by
S=V%RV*%, (3.12)

and the determinant of S by

8|=|VARV*|
—[VH|-RIVvH

With lV”

=/S1 "8y ++4/$,, » it is also true that

lSI = (\/SHSZZ " Spp )ZIRI

=s5,5nS,Rl . (3.13)

= (ﬁ Su )lRl

I=]

Let R;,, be the matrix obtained from R by deleting /* row and m® column, and
V”:be the matrix obtained from V/5 by deleting /* row and /* column. Similarly, S,

can be obtained by S,, = V¥R, V% and the determinant of S,, by the following

Im " m

expression,
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ISlm | = IVI}{RImVn}f

= |V,"

: Ilel IVn}:{

. Lm=12,.p. (3.14)

From Egs. 3.13 and 3.14, the elements of ™', s, can be written as

VAR,V

s =(=1)""! , Lm = 1,2,...p. (3.15)
(IE[SU JIRI
I=1
Thus the #* sample major element, M, ,, is
Ali.” =(Yi,l_./?l)zs”’ l=1’27“'sp (3.16)
where
( Illsqq)llel IR I
st = (=) ke = =12, (3.17)
IE[ R s,,IRl
i Sqq l I

since IV,% I Ry|- 'V,x

p
= ( quq ]IRIII :

=]

.

Finally, the sample major elements may be expressed as

I ”l ( il — 1)2
M~ = = ee .
. ( IRI Su , b= 12:p, (3.18)
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which shows that each sample major element is simply a squared standardized normal

. . . R .
deviate, modified by a correlation factor (ll?”ilj of a p-variate process.

3.4 Sampling Distribution of Major Elements

The sample major element M of Eq. 3.18 is a function of (X, J—f ;) which is a

normal random variable with the expected value and variance given by

E(X,-X)=£(x,)-£(X) =1:-- k=0, /=12, ., (3.19)
7%z, =Vl X))
i —
i _
= var(/?,.',)—2cov X, P +var(f,‘,)
, [ =1,2,..p. (3.20)
e
n k) n kn
k-1
(%
Thus, (z\_’,, - X ,) isa N(O, %;1—10,,) distribution. Let Z, be the standardized

normal variable of ()_( = X ,) . Then
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: -0
zZ, = (—’——L ~NQ1), I =12,..p (3.21)

Subsequently, Z} follows a Chi-square distribution with one degree of freedom,

that is
A
z = (iii_l_l)z ~x2, l=12,.p (3.22)
—Gy
kn
And

(% -

Gy

2l

)2~(k—1

. )x?, [=12,..p (3.23)

With a large number of samples (k> 50, say), the practice of control charts has been to

simply substitute o}, by s, in Eq. 3.23. Then, approximately,

— =\2
(Xu- l) k-1 ,
-t = 12.p. (3.24)

Su

. R, . .
On multiplying Eq. 3.24 by (%i—l) , it then follows that the sample major element has

the adjusted chi-square distribution with one degree of freedom. That is,
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M, =(IR”|] (Xu "Xl)Z - (IRHI}(/C—I)X[:  I=12p, (3.25)

IR| S, R| )\ nk

which provides the basis for control limit calculations and the interpretation of each of

the p control charts of sample major elements.

3.5 Expected Out-Of-Control Patterns of A Trivariate Process

In Section 3.2, it was speculated that the sample major elements should be highly
sensitive and unique to any shifts in the process means, individually for each mean and
simultaneously for all p means. To demonstrate how the sample major elements
distribute themselves on their respective control charts when the process is out of control
because one or more shifts in the process means, a trivariate process is analyzed in this

section.

Consider a trivariate Gaussian process, p=3, with a mean vector g and a
covariance matrix Z. Let 48 be a vector [h,§,, h,8,, h,8,]" of the shifts in the mean
vector, K, where each of the h; may have values [-1,0,1] denoting respectively a

downward shift, no shift or an upward shift of size §, in the process mean of X,. For
each sample, a sample mean vector X = [J?l ,J?z,f}]r is analyzed for possible signals of any

one or more shifts in the means. Since the process is subject to any shifts in the means at
any time, the process variables may be written as Y =X +43 for the following analysis.

The sample mean vector of ¥'is
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Y=X+hs. (3.26)

The expected difference between ¥ and the grand mean Xis

E¥-X)= EK + 16 -X)= E®-X +18)= EK -X)+
Since E(X—§)=O,
EY-X)=hs. (.27)

The value of the expected sample major element associated with X is given as follows.

E[M,,]:E[(?, —f,)zs"], for/=1,..., p.

= E[(Yl -%) 'IRIII} (3.28)
si [R]

where ¥, is the sample mean of ¥},

When the process variance-covariance is stable and in-control, (I%{R[—il) may be
treated as a constant. Therefore,
— =\2
E[M,]= IR”'E[(Y’ -%)) ,  I=12,..p (3.29)
[R| Su

From Eq. 3.24 and E(x,%) = 1, the following result can be obtained.
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A G-F ] J & +hs S
S i Sur
=F (5{-1'§1)Z +2h8 (§I'§I)+(h181)2
I Su S [=12,p (3.30)
[__ _ o , ’ ybseensl/e
g &R +2h55[x"x')+5 (43,) J
Sy Sy Sy

k-1 + (h151)2
nk Sy

Accordingly, the expected value of M, is given by

s i1, 0

|R| nk s
L o1 (3.31)
_k=1{|Ry] 2 4
- nk (|R| ]+(h181) c

Eq. 3.31 shows that the expected value of a sample major element will be very large if a

shift actually occurs, because the amount of the shift is squared in the expression of .

3.5.1 Shift Combinations

When a process is monitored for three process variables, there are a total of 3°=27
possible states of the three process means, including the one with no shifts in any of the

means, as shown in Table 3.1. The shift size §; will be expressed, as usual, in terms of the

standard deviation of X.
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Table 3.1  Possible shift Combinations for A Trivariate Process
[Variable|Shiftsf 1|23 |4[516]7|819]10]11]12]13]|14]15]116]17]18[19{20/21{22]|23|24[25]|26|27
Xy hy f{=1=]-1—-|—-]=1=]-|-10}]0]010]O|OfO}O|O|+|+]|+|[+]|+]|+|+]+]+
Xy hy |=[-{—=|0]0|O|+]|+]+ | =10}0]O{+]|+j+|~|~-|=]O0]O{O|+]+]+
X3 hy |=]0]+]=]0)+{—-]|O0)+]-JO|+|~-|O)+]—-JO}+]|—-|O|+}—-|O0O}+}—-]O0}+
+ : the shift is upward, or an increase in the mean.

0 : no shift
~ : the shift is downward, or a decrease in the mean.

39

For any multivariate control charts to be informative for the identification of the

specific nature of shifts in each of the p means, when a process is judged to be out of

control, the out-of-control signals of all the p control charts must exhibit unique patterns,

one for each possible combination of the shifts.

3.5.2 Possible Correlation Structures of A Trivariate Process

In practical applications, correlation coefficients are often used to represent the

dependency relationships among the variables. Out of a total of eight, mathematically

possible, pair-wise combinations of the three correlations, there are only four such

combinations that can exist physically in a real process. These are listed in Table 3.2.

For example, if p,, is positive, then p,; and p,; must have the same sign to be physically

meaningful.
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1+ ]+ |+
21+ — | -
31— + | -
41 -1 -1+
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Moreover, in statistical analysis, we only need to consider the following two

distinct types of correlation structure need to be considered:

(a) All Positive Correlations = [p12 >0, pi3 >0, py; > 0]

(b) Two Negative and one Positive Correlations => [pl2 <0, p; >0, pyy <0]

The expected out-of-control patterns of the sample major elements will be

different between the two processes with different correlation structures.

3.5.3 An Example of Expected Patterns of Major Element Distributions

To demonstrate the expected out-of control patterns corresponding to each
possible combination of the shifts in the three means, a trivariate process where all three
correlations are positive has been analyzed as presented in Figure 3.1. Part (a) of Figure
3.1 gives the data about the process which includes correlation and variance-covariance
matrices, 2 mean vector, and the type and size of the shift in each mean. A stacked bar
chart in Part (b) presents the expected sample major elements, according to the shift
combinations listed in Part (a). The various lengths of the stacked bars in Figure 3.1

reflect the expected magnitude of the changes in the respective sample elements.

It can be seen that the plots of the expected sample major elements of Figure. 3.1
clearly indicate which of the three process means may have been shifted. This is
definitely an advantage over most conventional multivariate control charts. However,

there are only seven unique patterns of the three sample major elements for all twenty-
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six possible shifts in the three process means. In other words, these sample major
elements can only display whether the possible shifts are in any one, two or all three
variables, but can not reveal the specific nature of each of the 26 shift combinations. For
instance, shift combinations #2, #8, #20 and #26 all have the same expected out-of-control
pattern, although each of which involves a different kind of upward and downward

shifts in the means of Xand X,.

Correlation Matix(lp | =0.21) c. A, Cov-Variance Matrix (|S| =0.62)
1 0.75 0.7 1.6 1.6 2.560 1.440 1.008
p= 0.75 1 0.65 1.2 1.2 1.440 1.440 0.702
0.7 0.65 1 0.9 0.9 41.008 0.702 0.810
(a) 2.78 -1.42 -1.02 1.09 -0.74 -0.71
p~! = -1.42 2.46 -0.60 == -0.74 1.71 -0.56
-1.02 -0.60 2.11 -0.71 -0.56 2.60
1 2 3 4 5 6 T 8 % 10 11 12 13 16 16 16 17 18 19 20 21 22 23 24 26 26 27
Wit -f-]1-1- - -1=-{-1-10 [+] 0 [ ] [\] 0 ] [) R B R + + | -] +1] -
h2f{ -1 -|-1]0 0 0 R R R - - ] 0 0|+ | « «|l-1~-]~]10 o 0 e ] s ] «
hd{-jo}j+}|~-]0 « | =-]0 ]+ 0 + gl+|]-~-lO0}+)|-JO}+}-]0 +{-]0o} «+
8 T Major Elements
7 T] ] D D Ml 3M22 aM23 El D D D
]. - st . . T st . - ~ Ittt S . - “ LTS .
(b) 1% i it - D S :

Figure 3.1  Process Information and Major Element Plots

When the plots of the three sample major elements are supplemented with the

sample minor element plots, together they would be capable of displaying thirteen

distinguishable patters. For example, with the help of sample minor elements,

combinations #2 and #8 would have different expected patterns. So would have
combinations #20 and #26. But the expected pattern of (#2, #26) would be still the same,

and so would be (#8, #20). It would be a great improvement in chart interpretation if

plots of sample minor elements were also employed in addition to the major elements.
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That, however, would be achieved at the extra and added complexity expense. An
alternative approach that utilizes only the major element charts presented in the next

section has been tried with good results.

3.5.4 Detecting the Direction of Shifts in the Means

As discussed earlier, the sample major element plots can not reveal the specific
nature of each and every combination of shifts in the means. In order to achieve such a
capability, the following modification of the sample major element calculations is
proposed to produce all the twenty-six expected patterns one for each specific
combination of shifts in the three process means.

= = A,; .
Let A,, = X,; — X, and compute — for each sample i so that the sample major

A
element now carries a “sign” clearly indicating the direction of the observed sample
deviation. Each signed or directional sample major element when deviating a great deal
from their expected value is more likely a reflection of the direction of the shift, up or
down. Furthermore, the expected value, E(M,),/ =1,2,3, of the modified sample
element will indicate the sign of the underlying shift. These modified sample major

elements, denoted by M, , are defined as follows.

Ai
]XiI'MU,, Ai.l #0.

M, =118y , [=12,.p. (3.32)
0 A, =0
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Figure 3.2 is a plot of the expected patterns, E(M],)’s, corresponding to each of

the twenty-six combinations of shifts in the means of the same example trivariate process

discussed in the last section. The direction of each E(M;,) is clearly displayed by the

stacked bars in Figure 3.2. The twenty-six distinctly unique patterns are clearly

identifiable for each specific combination of the shifts.

A table of out-of-control patterns such as the one shown in Figure 3.2 will be

very helpful in practice for diagnostic analysis of multivariate control charts.

1 2 3 4 5 6 7 8 9 10 11 12 13 ¥4 15 6 17 18 19 20 21 2 B U4 5 % 7
h|—| -1 - ~|=t=[=I=-{-]0[0}0]O0]O|O|O|O}O|+]+]+]|+]|+]+]|+]|+]+
R|-]=]=10{0]0]+|+|+[-|-[-}O0]O|O]+|+|+[-=)—=[-]0]O|O]+]|+]+
B{—-{0]+] =] 0f+]-jO0f+|-[O0]+][-JO]+|[~]JOf+]-O|+|-]O[+|—-]0]+

Figure3.2  Modified Major Element Plots (M},)

It is noted that by adding the “sign”, indicating the direction of a shift, each of the
p major element control charts can be analyzed individually, one for each variable. Such

makes the analysis of a multivariate process control very simple and easy.
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3.5.5 Control Limits for Major Elements

It was shown in Section 3.4 that the sample major element is distributed as a
function of a chi-square variable having one degree of freedom. For control chart
construction, the upper and lower control limits of the sample major elements may be

set at a significance level a as follows:

(3.33)

In the application of the major element control charts, the lower control limit of
each of the major element charts may be set to zero for simplicity. The reason for this is
that any shift in the mean will lead to a big increase in the sample major element, while
the magnitude of LCL becomes relative very small. The sample major elements,
however, are sensitive not only to shifts in the process means but also to changes in the
variance-covariance matrix. It is therefore a prerequisite that the variances and
covariances of the process are in statistical control before meaningful analysis of the

major element control charts can be conducted

When control charts are to be constructed for the modified sample major
elements, both upper and lower control limits must be calculated. Since the modifier,

A . o
—, can only be either +1 or -1, the upper and lower control limits will have the same

>
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absolute value. With negligible error, it is recommended to set the center line at zero
such that one two-sided control chart is used for each sample major element with

symmetrical control limits as follows:

_[|Rd] (k—l) 2
UCL (IRI ok AL1-a/2

CL=0 , [=1.23..p. (3.34)

Ryl Y k-1) ,
e B

3.5.6 Expected Direction Pattern for p-variate Process

For a general p-variate process with p>3, each shift combination of the p
variables is also expected to exhibit a unique directional pattern. Since each variable of a
p-variate process can only be in one of the three states: shifts upward, downward or no
shift, there are 3’-1 types of shift combinations. For example, a four-variate process has
81 states with 80 unique out-of-control patterns to be expected for the sample major
elements. Such unique out-of-control patterns of a 4-variate process are displayed in

Figure 3.3.

The number of the shift combinations will increase drastically even for
moderately large p vales such as five or six. Theoretically, it seems that no matter how
many variables are being controlled, changes in the process means can be identified by
similar charts with upward and downward stack bars. However, as p increases, it will
become more difficult to read a large number of sample major element charts with

reference stack-bar charts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

$§300. ] 91BLILA-INO,] ¥ 0 SUIDNE ] [EUONDIIJ Paioadxy siuawa[y Jofepy ¢'¢ aandyg

oL oL 143 oL 19 12 3] L 117 144 114 or 114

'
'

T I R w
v
_ R _ WA 7
GGG
| ) |
- AN 7 o
AT e et N7%1%21%%%7
9757
\.\- .-\»\-.-. o e He He Nie He We |)e '“\ “ “
%% %% 2%%9%2,5%
%% %% 1 g
AV i
%1% 9%
7% o
i

YWE EWO
+0-+0~+0-+0-+0-4+0~-4+0-+0~-+0-+0-+0-+0-+0-+0
+4+000--~-+++000---+++000--~-+++000-~-—-+++00
++++ 44+ 444000000000 =---===1=== F+H++++ 4400000
FhEE A+ bbb+ 4444 00000000000000

18 0% 6L BL LL 9L SL WL L TL 1L OL 69 B9 L9 99 §9 9 €9 19 19 09 65 8§ LS 95 §§ +§ €5 1§ IS 05 6% RE L¥ OF SF b (b 3P It

or 114 " 14 114 114 144 6l 9 £l ot L 14 '

114

(4}

e NN

St

14

[14
ZnE tWo

FO-+0-4+0-4+0-+0-+0-+0-+0-+0~-+0-+0-+0~-+0-

S+ + 000 - - -+ +H+000-~=-+++000-~-~-+++000-~-~ 1y
000~~=--~~~-- +4+4+++4+4+4+4+000000000-~=~=---~=~ i
000000000000 -~~~ ~=== =00 woooonoon w
6T NE LT OC SO P CCTC IC OC 6T RILTOUSTHTCTZTITOZOL RELIGLSI P CLTI Il Ol 6 B L O § ¢ € T |

. ,ﬂ 0z
| X .“..lm—.
'
-
] BB E92191%%
s AU LAN%
2 AN
mw- AN -
\\. ol e ' . sl WU U 1t 1 el e
\\.. A e N e e Ul Nl el U
\mh. A g et et g g g e Jaan
7 A
7 7
7 %% ;
“ u
“ 7
7 % !

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

Chapter 4

MAJOR ELEMENT CONTROL CHARTS BY SIMULATION

The methodology of Chapter 3 is developed for the control of the means of a
multivariate Gaussian process. It was shown that the sample p major elements could be
analyzed individually for statistical signals of possible upward or downward shifts in each
of the process means. This chapter demonstrates how these major element control charts
are applied, using simulated sample data of a number of trivariate processes with different
process means and covariance matrices. In the estimation of the process parameters
needed for initial chart constructions, the sample size effect on estimation errors is
discussed with simulated demonstrations. The programs that were employed for data
simulation are written in SAS IML language and executed on UNIX computers. They

are listed in Appendix L.

This chapter begins with a description of the algorithm for computer simulation
of a trivariate normal process in section 4.1. Section 4.2 presents the design of various
sets of parameter and shift combinations for the simulations to exhibit the out-of-control
patterns of sample major elements. In Section 4.3, a step-by-step computation and
charting procedure of the three major element control charts is discussed. An example of
a simulated trivariate process is described with illustrations in Section 4.4. The

estimation of process parameters for control limit calculations and the distributional
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patterns of the directional major element control charts are discussed in Section 4.5.
Some results on the sample size effects on parameter estimation and on the general
effectiveness of the proposed major element control charts are given in Section 4.6 and

some summarized results in the final section.

4.1 Simulation of A Trivariate Normal Process

Consider a trivariate normal process characterized by a random vector
T . . . .
X=[X 10 X5, X 3] with a mean vector [, a variance-covariance matrix X and a

correlation matrix p as

1 py P
P={P 1 puy
Pz P |

4.1.1 Input Process Parameters

The simulation of a p-variate normal process requires certain process parameters
as input data. The specific parameter inputs are determined according to the method or
algorithm selected for simulation. The method of Cholesky’s Factorization, which

decomposes the process variance-covariance matrix, £, was employed for data simulation

in this research. Similar to Eq. 3.12, the method uses the expression, £ = vipv# | where
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,/o'” 0 0
v’ = 0 6, O
0 0 O

As a result, the input parameters required for simulating a trivariate normal

process include the means (u,,p,,1;), the standard deviations(s,,5,,5,) and the

correlations (P,,P3,P23) -

4.1.2 Cholesky Decomposition of Variance-Covariance Matrix

Since the variance-covariance matrix £ is positive definite, there exists a unique
lower triangular matrix L (/; = 0, £ < j) with positive diagonal elements such that

(Anderson, 1984)

z=LL". 4.1)

The first step of the Cholesky simulation is to generate a data matrix Y of three

correlatedd normal vectors with variance-covariance matrix = and 0 mean vector,

Y=ZL, 4.2)
where
Z= [ZI’ZZ’Z3]ax3

is an (2x3) matrix of three vectors of an independent, standardized normal

deviates, N(0, I) where I is an identity matrix of order 3. So
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Y ~ N(0,%). (4. 3)

Then , the simulated sample data of size 4 of the trivariate X is obtained by

X=p+Y=p+ZL. (4. 4)

4.2  Simulation Design of Mean Shifts

A design of the simulation runs is described in detail in this section. In order to
demonstrate that certain distributional patterns of the sample major elements do exist
while the process means are shifted, shifts of different sizes and directions were simulated
for the analysis. Simulated data sets were also generated from different processes of
various process means, standard deviations and correlation structures. Results from these
various simulated data allow for the evaluation of the performance effectiveness of the

major element control charts.

Each of the three process means may be in one of three states, (-, 0, +) which
denote respectively “a downward shift”, “no shifts”, and “ an upward shift”. There are a
total of 3° = 27 possible states of the process at any time, as shown in Table 4.1. Four
different sizes of the shifts, 0.25¢, 0.50, 1.0c and 1.5c, in the process means were
simulated to observe their effects on the distributional patterns of sample major elements
on each of the three control charts. Table 4.1 lists all the 27 states under each of the 4
sizes of shift, where h; and §, denote the direction and size of a shift in the mean of

variable /.
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In order to ascertain the possible effects on the sample distribution patterns of the
major elements due to various types and degrees of correlation among the three variables,
a total of ten different correlation matrices were used in data generation. Five of which,
with various degrees of correlation, were simulated for all positive correlations and
another five for cases with two negative correlations. Table 4.2 summarizes the

parameter values for all the simulation runs of the base data when the process is in

control.
Table 4.1 Simulated Shifts among the Three Variables

Shifts h,%,9, h,%:9,; h,9353

1 |-0.250y| -0.50, | -1.00, [ ~1.56, [-0.250,] -0.55; | —1.0a; | —1.56; |-0.250y|-0.503] -1.00; | -1.50
2 |-0.25a,| -0.50; | -1.00; | —1.50; [~0.25a,] ~0.505 | —1.005 | —1.50, U

3 [-0.256y| -0.50; | -1.00, | -1.56 |~0.250,| -0.50, | -1.06x | —=1.50, [+0.2503{+0.503] +1.0cy | +1.5a%
4 |-0.250;| -0.5¢, | -1.00, | -1.50; -0.250;[-0.503| —1.005 | —1.503
5 |-0.250;| -0.50; | 1.0 | ~1.5q; U Y

¢ |-0.25q,] ~0.50; | -1.00, | -1.50, U +0.250;{+0.50;| +1.00y | +1.504
7 [-0.250y| -0.50; | -1.00; | ~1.55; |+0.256,] +0.50» | +1.00, | +1.505 |-0.250,|-0.503| ~1.00; | —1.503
8 |-0.250y| -0.5q, | =1.00; | —1.50; |+0.250,| +0.50, | +1.00, [ +1.50, U

8 |-0.250y] -0.50; | -1.0q, | =1.50y [+0.250,] +0.50> [ +1.00, | +1.56, [+0.2503]|+0.503( +1.0cy | +1.50y
10 -0.250,| 0.5, | -1.005 | —=1.505 |-0.2504|-0.50;| —~1.00; | —1.503
11 U -0.25a,| -0.50, | -1.00» | -1.50, Y

12 U -0.25c,| -0.50; | =1.00; | ~1.505 [+0.250, [ +0.50;| +1.00y | +1.50y
13 Y U -0.250;|-0.50;| -1.00; | —1.505
14 U U )

15 U Y +0.2503|+0.50;| +1.00y | +1.56,
16 Y +0.256,| +0.50, | +1.00, | +1.56x |-0.250;[~0.56,] —1.003 | —I1.503
7 U +0.250,] +0.50, | +1.00; | +1.50, U

18 U +0.250,] 4+0.50 | +1.00, | +1.50, [+0.250;|+0.50;] +1.0cy [ +1.50y
19 {+0.250y} +0.5qy | +1.00; | +1.50; [-0.250,| -0.56> | =1.06. | —1.50, |-0.2505|-0.505| —1.005 | —1.50
20 [+0.250,| +0.50; | +1.00, | +1.50; |-0.250,] -0.50; | —1.00; | ~1.50, U

21 |+0.350,| +0.50; | +1.00; | +1.5G; |-0.25G;| <0.505 | —1.00; | —1.503 |+0.250; | +0.50;] +1.00; | +1.56;
22 |+0.250;] +0.5q; | +1.00; | +1.50; -0.250y|-0.50y| -1.003 | —1.50y
23 [+0250,| +0.50; | +1.00; | +1.50, Y U

24 14+0.25¢,] +0.50, | +1.0q, | +1.50; U +0.250;[+0.50;| +1.005 | +1.5q
25 {+0.25q(| +0.5q, | +1.00y | +1.50; [+0.2503] +0.56, | +1.00; | +1.505 |~0.256;|-0.50;] —1.00; | —1.50y
26 |+0.250)| +0.50; | +1.0q, | +1.50, [+0.250,[ +0.50, | +1.00, | +1.5¢ U

27 |+0.25qy| +0.5q; | +1.0q; | +1.50; {+0.256,[ +0.50, | +1.0a, [ +1.502 +0.250;1+0.56;| +1.0c, f+l.5cr;
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The order of a simulation run is denoted by a 2- or 3-digit ‘run no’ as listed in
Table 4.2. It is noted that the even numbers, Run 00 to Run 100, indicate those runs
with all positive correlations, while the odd numbers, Run 01 to Run 101, with two
negative and one positive correlations. In addition, each simulation run contains four

different sets of sample data, one for each of the four shift sizes in the means.

Table 4.2 Summary of the Parameters Used in Simulation

.. . Two Negative and One
E(X) Standard Deviation | Simultion All Positive Cfmdmon Simultion Positive Correlation
Coefficient .
Caoefficient
Xy X2 X3 St S2 sy | Run No. M2 i3 rn | Run No. 12 i 3
00 0.7 0.9 0.6 01 -0.7 0.9 -0.6
10 0.2 0.1 0.15 1 -0.2 0.1 -0.15
3 15 9 1.6 1.2 0.9 20 0.3 0.8 0.35 21 -0.3 0.8 -0.35
30 0.85 0.4 0.8 31 -0.85 0.4 -0.8
40 0.95 0.9 0.875 41 -0.95 0.9 -0.875
50 0.7 0.9 0.6 51 -0.7 0.9 -0.6
5 06 0. : :
3 1 9 0.08 10.012} 0.09 60 0.2 0.1 0.15 61 -0.2 0.1 -0.15
70 0.7 0.9 0.8 71 -0.7 0.9 -0.6
05 | 065 0. K . .
6 5|18 12 0.8 80 0.2 0.1 0.15 81 -0.2 0.1 -0.15
90 0.7 0.9 0.6 91 -0.7 0.9 -0.6
0.5 | 0.65 | 0.25 | 0.06 |o0. . :
06 25| 0.06 |0.012) 0.09 100 0.2 0.1 0.15 101 -0.2 0.1 -0.15

Another twelve more runs were also simulated for relatively very small values for
the process means and standard deviations using the correlation structures in Run 00 &

01 and Run 10 & 11.

For each simulation run, the computer generated 13500 of 3x1 vectors. Every set
of ten vectors was taken as one sample. There are 50 samples for each shift combination.
The sequence of samples from sample no.651 to no.700 (shift no. 14 in Table 4.1) of each
run represents the in-control state without shifts. These in-control data were used to

calculate the sample means, the sample standard deviations, the sample correlation
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matrix, and the sample variancecovariance matrix. These sample statistics were used to

construct the major element control charts.

All the simulated sample data including input process parameters are documented

in Appendix II.

4.3  Setting-Up Major Element Control Charts

Upon completion of each simulation of an input process, the simulated sample
data is used to calculate the sample major elements and the control limits for each chart.
A step-by-step procedure for the construction of the major element control charts will be
explained in this section. In addition, programs for all the computations were written in

SAS IML and are listed in Appendix L.

According to the methods described in Chapter 3, the following is a step-by-step

procedure for the construction of the major element control charts.

1. For each sample of n simulated observations, the sample means and sample

variances and covariances are calculated.

Xi,l

n
inj.l
_ J=t

n

Si _Li(xw — X Xxij,m ~Xim )T I,m=1,2,3. (4.5)

idm —
n— 1 j=l
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where x;;, is the 7 observation, j=1,2,..,n, in the 7 sample of variable / and
S 1 is the * sample covariance of variables / and m. When [ =m, S, is the #*

sample variance of variable /. The sample variance-covariance matrix can be

written as

Sin Sz Siis
S; =512 Sin Simhi=L2,...,k 4. 6)

Sz Siasz Siss

where £ is the number of samples.

2. The grand sample mean, X, and variance-covariance matrix, S, are respectively

the arithmetic average of all the £ sample means and & sample variances and

covariances.
Kk K k
— z X i Z Si Z si Am
X=+— and§=iL=| & . @.7)
k k k
3x3
3. The inverted sample variance-~covariance matrix (S%) is then calculated.

s+ =[s],,, = [(— 1) %J . 8)

where S, is the matrix obtained from S by deleting /* row and m* column and

“| |7 1s the determinant of a matrix.
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4, The sample major element of each variable / is calculated as follows:

M, =(fu —f,)zs”,l=l,2,...,p .

5. The directional sample major element with X, — X ;, =4, may be calculated by

A

il
T My 8, %0
My, =1, : *.9)
0 Ay =0
R . .
6. The value of l—”l- is calculated for each process variable, where the value of R, is

[R|
the matrix obtained from the sample correlation matrix R by deleting /* row and

M column, /= 1,2, ..., p.

7. The control limits and centerlines for the major element control charts are

obtained by Eq. 3.34 as follows.

IRy| (k—l) 2
UCL, =|-—— | — )
{ ( |R| nk Xl.l-a/-

Ry|\ k-1
re, =—(ﬁ (B

where & is the number of samples, and 7 is the sample size.
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4.4 A Simulated Trivariate Process - Run 00

A simulation run is a set of 1,350 simulated samples of size 10 with each 50
samples generated under one of the 27 states of a trivariate process including an in-
control state. Each of the other 26 states is an out-of-control state having a particular
combination of the shifts in the three means. In this section, the construction and
interpretation of the major element control charts for a trivariate process will be
illustrated using the simulated data Run 00, where the shift is one standard deviation in
size. The control limits, based on the 50 simulated samples of size 10 (Data Nos. 651 to
700) while all three means are in control, are calculated at a significance level

/2 =0.00275 for chart analysis. The input parameters for generating the data of run 00

are given in Table 4.3.

Table 4.3 Simulation Input Parameters for Run 00

u Std.Dev. Correlation
X4 3 1.6 1 0.7 | 0.9
X2 15 1.2 0.7 1 0.6
Xa 9 0.9 09 | 06 1

Run 00 data are simulated for a process with relatively high correlations among the three
variables. All relevant sample statistics calculated from the in-control data (Parameter

estimates and sample statistics) are given in Tables 4.4 and 4.5.
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Table 4. 4 In-Control Process Statistics of Run 00

Run 00

X, | 3.028 | 1.662 0.7089| 0.910) 2.761} 1.415| 1.448| 2.791| 0.853|-3.803
X2 | 15.038 { 1.200] 0.709 0.626] 1.415| 1.440] 0.720{ 0.853{ 1.402] 0.209
X3 | 9.035 | 0.958| 0.910] 0.626 1] 1.448] 0.720| 0.917{ -3.803| 0.209| 7.213

-

-—

The following are the control limits at «/2 =0.275% for the three control charts. From

Table 4.4,

|R|=0.08512; |R,,|=0.6081; [R,,|=0.1719; |R,;|=0.4973.

With n=10, k=50 and ¥;,_q,7s =8-9665, the control limits and centerline are:

ucr, = ( 0.6081 J( 20-1 J(8.9665) =62777;CL, =0; LCL, =-62777
0.08512 )\ 10 50

UCL, =( 01719 )( 20-1 )(8.9665)=1.7745;CL., =0,LCL, =-1.7745
*70.08512 10x50 ?

0.4973 )( 50-1

)(8.9665)=5.1398; CL, =0;LCL, =—5.1398
0.08512 A 10x 50

UCL, =(

The sample major elements and their corresponding control charts are plotted as
shown in Figure 4.1. All three major element charts show the process in good statistical
control. Five sets of 10 samples, each with one kind of shift combinations, are listed in

Table 4.6 and plotted on the control charts as shown in Figure 4.2.
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Table 4.5 50 Simulated Samples of A Process In-Control

' ' ’
1 Xi.Z X; 3 Mi.l M i2 i3

1,

Subgroup ¥
@ -
1 3.049 15.179 8.951 0.001 0.028 0.051
2 2980 15.129 8832 -0.006 0012 0296
3 1.998 14678 8335 -2963  -0.182  -3.529
4 3.164 15466  9.054  0.052 0.256 0.003
5 2772 14.866 8.828 -0.182 -0.041  -0.309
6
7
8
9

3.376 15,619 9.112 0337 0.473 0.042
2741 14975 9.000 0231 0006  -0.009
2.493 14904  8.894 0.799 0.025 -0.143
3.017 14.881 8928  0.000 0.034 -0.083

10 2570  14.862 8632 0585 0.043 -1171
11 3.309 15.514  9.066  0.220 0318 0.007
12 2245 14426 8877 -1.709 0525 -0.180
13 3.502 15.008 9257 0.628 <0.001 0.354
14 2.631 14.984 8915 0440 0004 -0.103
15 3.038  15.641 8.868  0.000 0.509  -0.200
16 2965 14959 9.243  -0.011 0.009 0.312
17 2490 14842 8.887 0809 -0.054 -0.157
18 3416  15.113 8951 0421 0.008  -0.051
19 2407 14438 8801 -1075 0505 -0.395
20 3.758 15.382  9.401 1.487 0.165 0.968
21 2.955 15.013 9.130  0.015 -0.001 0.066
22 4100 15.829 9.536  3.204 0.877 1.807
23 3.004 14779 8898 0.002 0094 -0.135
24 2753 14.815 8870 -0.211  -0.070 -0.197
25 3592  15.587 9350  0.889 0.423 0.715
26 3.009 14666 8875 0.001 -0.194 -0.186
27 2.863 14722 888 -0.076 -0.140 -0.160
28 3.985 15.558  9.607  2.556 0.380 2.360
29 2.285 14750  8.639 -1.542  0.116  -1.129
30 3.857 15,695  9.586 1.918 0.605 2.188
31 3.170 15.058 9.072  0.056 0.001 0.010
32 3.275 15.014 8967  0.170 0.001 -0.033
33 2.313 15.038 8747  -1.425 0.000 0599
34 2.393 14736  8.830 -L124 0.127 -0.303
35 3.433 15.536  9.171  0.458 0.348 0.133
36 2.405 14692 8919 -1.082 -0.167 0097
37 3787 15303 9451 1.609 0.099 1.248
38 3.986 14913 9367  2.561 0.022 0793
39 3.178 14874  9.281  0.063 -0.038 0.436
40 2.197 15314 8505  -1.929 0.107  -2.029
41 3.533 15.134  9.254 0711 0.013 0.347
42 2220 14415  8.697 -1.823 0544 -0.823
43 2973 14749 8976 0.008 0.117 0.026
44 3.584 15463 9418  0.862 0.253 1.061
45 3.101 14900 9251  0.015 0.027  0.338
46 3.220 14535 9.135  0.103 0354 0072
47 3.084 15237 9316  0.009 0.056 0.570
48 2.903 15.180 - 8.894  0.043 0.028 0.143
49 3.167 14918  9.190  0.054 0.020 0172
50 3.164 14605  9.102  0.052 -0.263 0.033
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Figure 4.1 Control Charts of the 50 Sample Major Elements in
Table 4.5.
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Table 4.6 Samples of Five Different Shift Combinations

Subgroup X, X,, X, M;, i M
@
51 1692 13.805 8461 4978 2132  -2.374
52 0579 13518 7714  -16745 -3241  -12.590
53 0352  13.067 7.460 -19.982 5445 -17.894
54 0973  13.600  8.088  -11788 -2900  -6.469
55 1588 14056  8.139 5784  -1351  -5.789
56 0749 13816 7482  -14.496  -2.093  -17.404
57 1933 13757 8312 3345 2299  -3766
58 1292 13.972 7.989 -8.410 -1.594 -7.896
59 1.410 14.044 8.188 -7.308 -1.386 -5.173
60 1625 13933 8.188 5491  -1713  5.172
61 0957 15268 9705  -11972 0074 3236
62 0921 14797 9531  -12390 0082 1774
63 1401 14761 10022 7391  0.108  7.020
64 1020 14784 9720  -11250 0091  3.388
65 1739 15598  9.996 4635 0440 6656
66 1853 14916 10106  -3.853 0021  8.270
67 2106 15845 10440 2371 0912 14231
68 1737 15289 10127 4651 0088  8.603
69 1635 15230  9.840 5413 0052 4670
70 1482 15123 9.846 6673 0010 4740
71 2958 13948 8060  -0.014  -1666  -6.857
72 2317 13205 7459 1411 4712 -17923
73 3200 13939 8393 0082  -1694  -2.974
74 3.375 14.091 8.097 0.336 -1.258 -6.353
75 3537 13923 8431 0724  -l742  -2.627
76 2302 13417 7640  -1.469  -3.684  -14.034
77 3272 13669 8320 0166 2627  -3.686
78 2827 13569  8.147 0113 3024  -5.6%0
79 3.142 13745 8417 0036 2343 2753
80 3715 13.696 8729 1318 2526 -0.675
81 4342 16436 8746 4817 2739  0.602
82 4821 15760  9.19 8974 0730 0051
83 3942 15511 8605 2333 0313  -1.336
84 3727 15746 8450 1365 0702  -2.469
85 4452 16074  9.044 5662 1504 0001
86 5509 16421 9229  17.18 2683  0.272
87 4213 16294 889 3918 2212 0.140
88 4581 16471 9109 6732 2880  0.039
89 4544 15854 9285 6414 0933 0449
90 5342 16161 9310 14950 1769 0.546
91 4.358 13.867 9.611 4.940 -1.923 2.396
92 4805 14014 10093 8810  -1470  8.074
93 5.119 13.679 10.031 12.206 -2.588 7.159
94 4577 13601 9920 6698  -289  5.643
95 4903 13605 9980  9.817 2877 6439
9 4317 13387 9799 4636  -3.821 4212
97 4856 13286 10006  9.326 4302 6807
98 4232 13.539 9.614 4.048 -3.148 2418
99 4438 14053 9890 5551  -1361 5269
100 4.782  14.651 10.119 8.582 -0.210 8.469
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Figure 4.2 Continuation of the Major Element Control Charts

for Samples 51 to 100
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The 50 sample major elements of Figure 4.2 clearly show 5 different out-of-

control patterns, one for each kind of shifts in the means. These are summarized in

Table 4.7.
Table 4.7  Shift Patterns of Samples 51 to 100
Variabl Sample No. |Sample No. |Sample No. | Sample No. {Sample No.
anable | s1-60 | 61-70 | 71-80 81-90 | 91-100
X Downward | Downward| No shift | Upward Upward
X, Downward|{ No Shift |Downward| Upward |Downward
X, Downward| Upward |Downward| No shift Upward
4.5 Evaluation of the Major Element Control Charts

For a control chart to be effective in general applications, it should have a high
degree of sensitivity to detect small shifts in the process parameter(s) being monitored.
In the case of univariate controls, the detection sensitivity depends simply on the amount
of common-cause variability in the process. With multivariate controls, however, the
factors that can affect such senstivity are many and become rather complex. The process
parameters such as the means and variances of a p-variate process may have widely
Furthermore, the p!/2!(p-2)! pair-wise

different values among the p wvariables.

correlations may differ a great deal from one another.

For the purpose of evaluating the effectiveness of the proposed major element
control charts, a total of 22 simulation runs were generated each with a different set of

parameter values, correlations, and sizes of the shifts. Details of the input process
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parameters and simulated results including all the control charts for sample major

elements are listed under each run number in Appendix III.

All the 22 sets of major element control charts in Appendix III are constructed by
the parameter estimates using only the data simulated for a trivariate process in control.
The various out-of-control patterns exhibited on these charts are summarized below in

terms of the effects of process parameter values, shift sizes and correlation structures.

4.5.1 Effects of Correlation Structures

The control charts for sample major elements of a trivariate process in Appendix
IT are arranged in the order of simulation runs. For each simulation run, there are four
sets of three control charts of sample major elements generated according to four
different sizes of shift in the means. The control charts are numbered by IIl-a.5, where 2
is the Run # and & denotes either one of the two types of correlations. As shown in
Table 4.2, there are 11 runs under each type of the correlations. Since the first 10 runs
(o, 01, 10, 11, 20, 21, 30, 31, 40 and 41) are samples generated from a process with
various correlation structures all having a same set of means and variances, the
corresponding control charts for these samples should reveal the correlation effects, if

any, on the distributional patterns of out-of-control.

A careful examination of this group of 120 major element control charts does not

seem to show any noticeable variations in the out-of-control patterns of the sample major
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. . RII
elements under different correlation structure. Due to the fact that the value of I—IﬁTI—

varies greatly under different R, however, the numerical scales of the major element

control charts vary a great deal with different correlation structures.

4,5.2 Effects of Process Means and Process Standard Deviations

In order to find any possible effects on the out-of-control sample patterns due to
varying magnitudes of process means and variances, three different sets of means and
variances were simulated each under four representative correlation structures (high and
low positive correlations, and high and low negative correlations.) These are identified as
Runs 50, 51, 60, 61, 70, 71 80, 81, 90, 91, 100 and 101. Together with the one in the first
group having the same correlations (Runs 00, 01, 10 or 11,) any deviations in the out-of-
control sample patterns among the four different means and/or variances may be
examined. As shown by the simulated control charts of Appendix III, there are no
apparent changes in the sample patterns when either or both the process means and
variances vary. Also, between the two correlation structures which produce very
different scales for the major element control charts, the pair-wise sample patterns of the

four sets of process means and/or variances are not distinguishable.

The above analysis through selected simulation data, although limited, seems to
show the robustness of the proposed major element control charts in their capability of

signaling the root cause(s) of a trivariate process out-of-control.
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4.5.3 Effects of The Size of Mean Shifts

Although the patterns of all simulation runs do not seem to change while the
process parameters are varied, the size of the shifts in the means does appear to have an
effect in the degree of clarity of the out-of-control patterns under all different process
correlations and parameters. Among the four different shift sizes (0.25¢ to 1.55) that
were simulated, it is obvious that the identification of the sample patterns under various
shift combinations become less clear when the size of the shift is as small as 0.25c. Since a
chart’s sensitivity in detecting shifts of a certain size increases as the variance of the
sample mean decreases, an increased sample size will improve the sensitivity in the

detection of very small shifts.

4.6  Deciding On Sample Sizes and Sampling Frequency

Routine operations of control charts often are constrained by time and costs of
sampling. Moreover, smaller samples are more likely to produce the information about
one and only one state of the process, whether it be in control or out of control.
Therefore, it is desirable to take small samples for process control in practice. Then the
question is how small should a sample be to satisfy a reasonable degree of confidence in

statistical estimation.

Another concern in sampling design is to determine the frequency of sampling.
Samples should be taken more frequently if the process is subject to frequent occurrences

of assignable causes and/or critical consequences of delayed detection of those causes.
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Economically, both the sample size and sampling frequency must be considered together.
These practical issues are not discussed further as they are beyond the scope of this
research. It is important, however, to analyze the effects of sample size and the number
of samples on the statistical properties of the proposed major element control charts
during their initial construction. While it is recognized that no exact solutions can be
expected, a simulation experiment on a trivariate normal process is presented in this
section to help illustrate the effects on chart construction and interpretation by varying
the sampling plans. For initial construction of the control charts, the errors between the
calculated control limits and their corresponding true values, called bias, are evaluated to
provide some basis for the design of sampling plans. The computation program of this

simulation experiment is documented in Appendix II.

4.6.1 Estimation Errors of Various Sampling Plans

The total amount of sample data to be used for initial chart construction is the
product of the number of samples k and the sample size n. In order to evaluate their
effects on the estimation errors of the control limits, the following simulation

experiment was conducted.

A trivariate process is characterized by a total of nine parameters that include
three means, three variances, and three covariances, the sample size required for their
estimations must be greater than 3 and preferably greater than 9. In this experiment, the
simulated data of nine different numbers of samples (k=25, 35, 50, 75, 100, 250, 500, 750

and 1000) and four sample sizes (n=6, 8, 10, and 15) were chosen for the analysis.
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Increasing either the sample size or the number of samples should increase the accuracy
of the estimates. It was expected, however, the effects of k may behave differently from

those of 7.

A full size simulation, consisting of all possible combinations of these two factors,
k and 7, was conducted at each of the five correlation structures with the same process

means and standard deviations as shown in Table 4.8.

Table 4.8 Process Parameters of the Simulation Experiment for
the Study of the Effects of Sample Size and Number of

Samples
Simultion E(X) Standard Deviation Correlation Coefficient
RunNo. | Xy | X | X3 | s S2 | S P12 P13 [
110 0.7 0.9 0.6
120 0.2 0.1 0.15
130 3 15 9 1.6 1.2 0.9 0.3 0.8 0.35
140 0.85 0.4 0.8
150 0.95 0.9 0.875

Twenty-five simulated replications of each run with each sampling plan (&, 7)
were generated. The sample statistics, calculated from each simulated replicate, were
used as estimates of their corresponding process parameters for control limit calculations.
All upper control limits have a significance «=0.01. Thus, there are 25 estimates of a
control limit for each run with one sampling plan. Since the lower control limit of a
major element control chart is obtained by multiplying the upper control limit by -1,
only the upper control limits are evaluated in all cases. Corresponding to each set of the

25 estimated or simulated control limit UCL_, a true control limit, UCL_, is
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computed according to the process parameters that were used as inputs to generate the
replicated data. As a measure of the estimation error of each UCLy,,, the following is

defined for subsequent analysis.

e, -uct

"""l x100% ,Rep = 1,2, ..., 25.
UcL

Biasg, ,(%) =

true

The mean, standard deviation, and range of the 25 Biasg,,,(%) of each simulation
were calculated and given in Appendix IV. Figure 4.3 and Figure 4.4 summarize the
results by plots of the percentage of bias for each of the three major element charts,
grouped respectively by sample size () and by the number of samples (&). Each plot also
contains five lines, each of which represents the changing behavior of the average

Biasg,,,(%) of a correlation structure.

4.6.2 Effects of the Sample Size (n)

As can be seen from the plots of Figures 4.3, increasing sample size tend to
increase the accuracy (smaller Bias) of the control limit estimates. When the sample size
1s equal to 6, the accuracy gradually improves as the number of samples is increased.
However, the rate of improvement varies quite a lot among the different structures of
correlation. For sample sizes of 8 and 10, the rates of improvement are very comparable
and less influenced by the correlations. In most cases, the percentage of bias is reduced to
less than 2% with 50 samples or more. When the sample size is increased to 15, even with
very small number of samples at 25, the bias error is 3% or less. It is interesting to

observe that the bias is uniformly small for data of Run 120 even with small k. This is
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the case where the three variables are only slightly correlated (p,, = 0.2, p;; = 0.1, pp; =
0.15). Thus, a much larger number of samples and/or large sample sizes are needed for

more accurate control limit estimations when the variables are highly correlated.

4.6.3 Effect of the Number of Samples (k)

Comparing with the effects of sample sizes, the plots of Figure 4.4 show that the
number of samples has relatively minimal effect on the estimation errors when it is
greater than 50. In most cases, with relatively larger sample sizes, 35 samples may be
sufficient for practical applications. However, even when 1000 samples are used to

construct the control charts, the bias is still about 1% in most cases.
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4.7 Summary of Simulation Results

Through simulated sample data of a trivariate process with various parameters,
this chapter has demonstrated the construction of the control charts for sample major
elements for practical multivariate process control. More important, the analysis of
many simulated control charts for sample major elements does confirm the existence of
unique distributional patterns of all 26 types of out-of-control, as expected from the

methodology developed in Chapter 3.

The similarity in the sample patterns of the wide range of simulation runs can be
seen on all the major element control charts. However, for processes subject to very
small shifts, e.g. 0.250, a much larger sample size, say 15, may be needed in order to

improve the clarity of the sample distributional patterns for more speedy identification.

Overall, the major element control charts have been demonstrated to be effective

in the detection of every possible combination of the shifts in means.

For most applications, it may be adequate to have about 50 samples of size 10 as
initial data base to establish the three control charts for a trivariate process. When the
number of correlated variables increases, a larger sample size and perhaps more samples
are needed for adequate chart constructions. It is suggested that a preliminary simulation
analysis similar to the ones described in this chapter may be conducted to find the
appropriate sampling plan for each special situation. More on the questions about

sample size and the number of samples will be discussed in Chapter 6.
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Chapter 5

COMPARATIVE STUDY OF VARIOUS CONTROL CHARTS

The control charts for sample major elements have been developed with the objective
to improve the effectiveness and information content for statistical control of the means of a
multivariate Gaussian process. It has been demonstrated in Chapters 3 and 4 that the
proposed sample major elements are efficient, effective and informative statistics capable of

representing or reflecting each and every one of the 3°—1 states of a p-variate normal process.

It is, therefore, interesting to make some comparative analysis between the major element
control charts and some of the other multivariate control charts developed in recent years.

This chapter presents a summarized report on such a comparative study using simulated data.

As reviewed in Chapter 2, several alternative multivariate control charts have been
introduced during this decade. Three of these control charts were selected for the
comparative study. These are: the multivariate profile control charts (Fuch et al, 1994); the
regression adjusted control charts (Hawkins, 1993); and the principal component control
charts (Chang, 1991). Common to all of these control charts, including the major element
control charts, is the idea of using independent sample statistics for charting. The methods
that are employed for producing independent sample information of each variable, however,
are quite different. The independent principal components are obtained by rotating a
correlated p-dimensional space into p orthogonal coordinates. The regression-adjusted

variables are the results of adjusting each of the p variables for its associated covariates. The
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multivariate profile consists of p individual bar plots of the standardized normal deviates that
are examined for out-of-controls only when the corresponding 7> goes out of control. The

sample major elements are only certain selected elements of a T as discussed in Chapter 3.
Since transformation and adjustment are likely to lose or alter some of the covariation in each
sample, none of the above methods could be expected to be perfect for multivariate control.
It is, therefore, their relative merits and shortcomings that are important to evaluate for

applications. The following comparative analysis was conducted to do just that.

For this study, the simulated data sets of Run #00 and Run #10 with the process
parameter values listed in Table 5.1 are used. As can be seen from Table 5.1, the two trivariate
processes selected for the simulation study have very different correlation structures, high and
low. These were selected for the purpose of ascertaining any correlation effects on the
respective merits of each type of the control charts. According to each of the four methods,
the required sample statistics were calculated and charted for comparison analysis. Each data
set includes 26 combinations of shifts in the means. The control charts by each method are
examined for (1) the uniqueness and clarity of out-of-control sample patterns and (2) the
agreement (or departures) between the unique sample patterns, if exist, and the expected

patterns from theory for each of the 26 possible out-of-control states.

Table 5.1 Process Parameters for Simulation Run 00 and Run 10

Ky S; Reunoo Rewm 10

3 1.6 1 0.7 0.9 1 0.2 .
15 1.2 0.7 1 0.6 0.2 1 0.15
9 0.9 0.9 0.6 1 0.1 | 0.15 1
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This chapter is organized as follows. Section 5.1 summarizes the simulated data sets
by the sample estimates of the process means, process standard deviations and covariances

and process correlation coefficients. The computation and plotting of the sample statistics

and control limits for the 7> chart and for each type of the control charts are presented
Section 5.2. The last section presents some of the important findings from the simulated

comparative study of the four types of multivariate control charts.

5.1 Summarized Information of The Simulated Data

For the estimation of process parameters and the construction of control charts, it is
essential to use only the data collected from a process in-control. As described earlier in
Chapter 4, Case #14 of each simulation run represents the process in control. The 50 samples
of size 10 in Case #14 of each simulation run are used as the initial database for the calculation
of all needed parameter estimates. By Egs. 4.5 to 4.7, the results are listed in Table 5.2 and

Table 5.3 for Run #00 and Run #10 respectively.

Table 5.2 Estimated Process Parameters for Run 00

IT% | s R S
11 303} 149 1 065 | 0.89 | 222 | 1.16 | 1.14
2 | 1501 | 1.20 | 0.65 1 053 | 1.16 | 143 | 0.55
3899 | 086 | 0.89 | 0.53 1 1.14 | 0.55 | 0.75
Table 5.3 Estimated Process Parameters for Run 10
] %, S, R S
1 (294 1154 (1 026 |0.09 1237 |047 10.12
2 |15.00 [1.18 |0.26 |1 0.23 (047 {140 [0.24
3 |899 |(0.88 10.09 [0.23 |1 0.12 1|024 10.78
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5.2 Simulated Control Charts of Four Multivariate Methods

Since T? control charts is of such a basic interest and importance and for use together

with the multivariate profile charts, two T2 control charts, one for each simulation run, are
shown in Figure 5.1. In the remainder of this section, all the calculation of the sample
statistics and control limits are presented for each of the four multivariate control methods.

Accordingly, a set of three control charts following each of the four methods,

1. Multvariate Profile Control Charts
2. Prinapal Component Control Charts

3. Regression-Adjusted Control Charts

4. Major Element Control Charts

are plotted for each simulation run as shown in Figures 5.2, 5.3, 5,4 and 5.5.

5.2.1 T? Control Chart

To compute sample T statistics, inverses of process variance-covariance matrices for

Run #00 and Run #10 are obtained by using Eq. 3.9 and listed as:

s'tost? g8 267 -—0.84 -345
Simee =| 57 s2 s |=|-084 124 0.37 |, and
sB §B 5B -345 037 634
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~0.67 039 =052
Si .= 039 -085 -0.10
~040 034 -085

With process means, X, and S of both simulation runs, the T>value of each sample is

computed by

7 =n(X-XJ 57 (X -X).

The upper control limits of Runs #00 and #10 at ot = 0.3% are:

UCL = E-/Gl(k-_-*.kl)—Lr;;_ll) a. p.hn—k-p+l

_3(50+1H@ao-1)
50x10—-50—3+] 0o°%3.48

=14.481

Sample T values and control limits for both simulation runs are plotted in Figure 5.1.
From Figure 5.1, the sample T statistics of both simulation runs have shown patterns for the
twenty-six simulated out-of-control states. The patterns of Run #00 are much clearer than the
patterns presented in Run #10. Correspondingly, the behavior of the patterns is altered when
the correlation structure has been changed. Eventually, there are cases simulated as all three
process means are shifted upward or downward, the sample 7* value are around the control

limits which indicates the out-of-control signals are very possible to be misidentified. Such as
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Cases #1, #4, #11, #17, #24, and #27 in Run 00, and Cases #1, #2, #4, #5, #6, #10, #11,

#13, and so on.

1 2 3 4 5 ] 7 L 9 10 1t 12 13 14 15 18 7 18 19 20 21 22 23 24 25 26 27
X1 - - = = - - - - =0 ¢ o6 O ] 0 0 0 o0 + + + r o+ o+ -+ o+ -
x2 - - - 0 0 0 + <+ + = - -0 [} 0 + + + - = = 0 0 0 - o+
x3 - 0 « -0 » - 0 + = 0 + - 0 + = 0 + - 1] + =0 + - 0 -
©
450 -
400 -

350 -4

300 -
250 4
200 4
150 +
100 -
80 -
[¢]

1011 121314 15161718192021222324252627
303 X, =1501, X, =899,p, =065,p, =089, p, = 0.53

7 8
RunOO:i’_

:- ll“ .JMW whl nml Hﬂ“ Mu.ﬂ W M..um

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Run 10 : X, = 2.94, X, =15.00, X, = 8.99. p, = 0.26. p,, = 0.09, p,, = 0.23

Figure 5.1 T* Control Charts for Run 00 and Run 10 with Control
Limits at o = 0.3%

5.2.2 Multivariate Profile (MP) Control Charts

To construct multivariate profile chart, first one needs to establish 7* control chart

that was shown in the previous section. Then, compute and plot the standardized normal
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. X i - m . . ) - -
variates, d;, = —JS—'— , for each variable with T* simultaneously. Here m, 1s a target value
I

for the process variables, and it is estimated by X, .

The sample multivariate profile data are plotted in Figure 5.2 as three individual plots
are for each variable. The MP charts indeed are shown clear patterns that agree with twenty-

six states of shift combinations. Additionally, the patterns are not changed when the process

correlation structures are different. However, the patterns can not be very useful if 7 is not

able to correctly signal the out-of-control states.

5.2.3 Principal Component Control Charts

To establish a set of principal component control charts for the standardized variables,
the eignenvalues and eigenvectors of correlation matrix must be obtained first. They are listed

below for both simulation runs. For simulation Run #00 and #10, the eigenvalues (A), and

eigenvectors (e) are listed below:

Mmoo =M Ay Ay]=[239 0.51 0.10],and

-0.62 023 0.75
Crmoo =l € ey]=|-052 -084 -0.17].
-0.59 049 -0.64
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0.55 065 -0.52
€0 =|0.66 004 072

Maunto =[1.39 0.92 0.69] _ 4 0.51 -0.76 -041]

The independent sample principal components Y;, for standardized variables Z,,are

obtained through the following equation,

Y,)=e,Z,,+e,Z,,+e;Z;;.

Principal components, Y;,, are plotted in Figure 5.3. The principal component plots

are displaying the patterns in both simulation Run #00 and Run #10. However, the patterns
for both simulation runs are not identical, which means the uniqueness of the distributional
pattern for principal components does not exist between two different correlation structures.
Further, the patterns do not directly correspond to the shift combinations. To interpret the
nature of mean shifts according to the pattern becomes very difficult, especially as the number

of variables increases.

5.2.4 Regression-Adjusted Control Charts

To apply the standardized data on the regression-adjustment procedure, Eq. 2.3 has to

be rewritten as following:

H = diagldiag[R " || "*R"'Z,
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where Zis the standardized sample data of X, R is the inverse of the sample correlation

matrix. The R of both the simulation runs are computed and listed as follows:

For the simulation Run 00,

592 —1.50 —445
R w=|-150 177 038 |,and
—445 038 474

Simulation Run 10,

1.07 =027 -0.03
Rpo=|—027 112 -0.23
-0.03 -023 1.06

Hawkins (1991) in his research suggested to plot the regression adjusted data by either
traditional Shewhart control charts or CuSum control charts. In this study, the regression-
adjusted data, H,, where [ =1, 2, 3, are plotted as three individual charts without any further
transformation by CuSum procedure. These three charts are shown in Figure 5.4. The
regression-adjusted sample statistics are presenting clear patterns in both Run #00 and #10.
Nevertheless, only the patterns in Run #10 agree with the 26 out-of-control states. In Figure
5.4, H, of Run #10 indicates variable x, shifted down from case #1 to #9, no shift from
case #10 to #18, and shift upward between case #19 to #27. Similar interpretation can be

concluded on both variable x, and x;. Unfortunately, the patterns in Run #00 do not
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correspond to the expected out-of-control states. Based upon the observations, it can be
conclude the patterns of sample regression-adjusted variable are not unique at least when the

correlation structure is different between two processes.

5.2.5 Major Element Control Charts

The computational procedure and the interpretation of the major element control charts
have been illustrated in detail in Chapter 4. Figure 5.5 displays the major element control
charts for both simulation runs. The sample major elements of both runs have shown the
unique directional patterns for all twenty-six out-of-control states. In addition, each pattern of
the three process means can be interpreted as the direction of the simulated shift in process

means.

5.3 Conclusions

T? control charts can effectively signal most of the out-of-control states, however, it

is very sensitive to the process correlation coefficient structure change. Sample T? statistics
for each process have shown its own distributional patterns with respect to the corresponding
shifts in process means. That is, different correlation structure shows different pattern,
indicating that the pattern is not unique. Surprisingly even with one standard deviation, T*

becomes very insensitive when the process variables are with correlation structures.

Multivariate Profile charts are established based the signals from T'? control chart.

Therefore, it automatically loses its power to reveal the nature of the process mean shifts if the
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out-of-control status is not reflected by 7?. Although patterns of MP sample data agree with
the corresponding the 26 out-of-control states, the patterns will become unclear when the

changes in process means are small.

Use the principal component analysis and regression adjustment to transform
multivariate sample data that have shown the relatively similar results. Such that both of the
control charts are shown some patterns, however, the patterns are not unique to each of the

out-of-control states and do not agree with the simulated shift combinations

The three major element control charts for three variables displays twenty-six unique
patterns that are free of the change in the process correlation structures. Furthermore, the
patterns are directly corresponding to each combination of the process mean shifts.
Therefore, we can conclude that the major element control charts overcome several
deficiencies unlike the other multivariate control charts that include the classical T* control
charts. It is also really easy and simple to apply. The shortcoming of the major element
control chart as discussed in Chapter 4, is that the patterns will become less clear when the size
of change in process means get smaller. The following chapters presents practical application
procedure, and discusses how the major element control charts can be used more efficiently

and effectively.

In this study, the trivariate process sample data of two simulation runs are used to
construct four types of multivariate control charts. The results of comparative analysis have
shown that only the multivariate profile control charts and the major element control charts

have show their sample statistics consist of unique patterns for each of 26 out-of-control
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states. The other multivariate control charts including the T* control charts have shown the
patterns, however, the patterns are not unique to the out-of-control state when the correlation
structures of the both processes are different from each other. To further verify these
findings, it is necessary to apply more runs of simulated data with different combinations of
process parameters (e.g. positive correlation vs. negative correlation structure) to show
whether the correlation structure is the only factor to affect the clarity and uniqueness of the

patterns of the sample statistics.
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Figure 5. 2 Multivariate Profile Data Plots for Run 00 and Run 10
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Chapter 6

A PROCEDURE FOR PRACTICAL APPLICATIONS

A set of multivariate control charts, named major element control charts, is now
available to monitor the changes in process means. There are two fundamental functions that

the major element control charts can usually provide.

e To detect an out-of-control state, and identify the variable among those correlated

variables that caused the changes in the process means.

¢ To provide information about the direction of the changes in the process means.

In order to establish control charts for the major elements, it is desirable to follow a
set procedure. A five-phase procedure is outlined to appropriately set up the major element

control charts and successfully serve their fundamental functions. Phases of the procedure

includes:

e Define the process,

¢ Collect the data,

o  Analyze the data,

o Interpret and identify out-of-control signals, and

¢ Formulate, implement, and follow up corrective actions.
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An overview of the procedure is presented in the succeeding section. Each phase of
the procedure will be reviewed, however, some of the important issues will be further

discussed in detail the remainder of this chapter.

6.1 Overview
e Define the process

The process must be understood in terms of its relationship to other operations and
users both upstream and down stream, and in terms of the process elements (people,
equipment, material, measurement, method, and environment) that affect it at each stage. To
achieve the best understandings of the process, the following questions need to be answered

while anty techniques are applied to analyze the process. (AIAG, 1992) The questions are:

1. What should the process be doing?
2. What can go wrong?
3. What is the process doing?

Many techniques such as the histogram, the cause-and-effect diagram, and the process
flow diagram help answer these questions. Furthermore, they can make the relationships
among the process elements visible and allow the pooling of experience from people who

understand different aspects of the process.
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e Collect the Data

There are two important aspects of the data collection procedure. First, the procedure
has to decide what quality characteristics to be observed and how to observe them. Then, a
sampling procedure need to be planned which is concerned with the selections of sample size,
sampling frequency, and number of samples. The details of the sampling procedure will be

discussed in detail later in section 6.2.

To determine what quality characteristics should be observed over ume, first one
should look into the current and potential problem area of a process. Considering existing
evidence of waste or poor performance (e.g. scrap, rework, excessive overtime) and area of
risk (e.g., upcoming changes to the design of the product, or to any elements of the process).
Sometimes, review of the process's history or construct a Failure Mode and Effects Analysis

(FMEA) would help to identify the most important quality characteristics.

In many manufacturing environments, there are a large number of variables to make
up a process. It is another concern that how many quality characteristics should be observed
at the same ume. Although a multivariate process control scheme is designed to observe
multiple quality characteristics of a process simultaneously, it usually will become very tedious
and inefficient as the number of variables gets larger. Therefore, study efforts should be
focused on those characteristics that are most promising for process improvement, and can be

proved that there is a need to control them simultaneously.

The correlation coefficient among the variables can help a great deal in determining

how many variables need to be monitored by the multivariate control charts. Correlation
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coefficient between two quality characteristics 1s bounded between -1 and +1. If it is
extremely high, say 0.95, two variables can be treated as one, or if it is very low, say 0.1, then
these two variables should be probably treated as two independent variables. There is no
specific range of correlation coefficient for which pairs of variables should be monitored by
the multivariate control scheme. Nevertheless, it is a good measure to assess what the

multivariate control charts is for two possibly related variables.

¢ Analyze the Data

The procedure of analyzing data is planned to ensure that the process is in a state of
statistical control. The major element control charts are designed to test how the process
means change over time. To establish the control limits for the major elements, it is very
important to assure variations among the variables are maintained at a constant level.

However, the methods of evaluating the dispersion of a multivariate process are very limited
as was discussed in Chapter 2. Control charts for Z™ and log|S| proposed by Chang (1991)
are easier to understand and to implement than the other charts. Therefore, to examine the
stability of a multivariate process, this research suggests applying control charts for Z* and
log|S| which is the most complete procedure introduced by Chang (1992) to look over

correlation and variance-covariance among variables respectively.

After process variability is examined to be in-control, the sample means of variables
have to be investigated with control limits calculated from the process means and process
variance-covariance matrix, which are estimated by average of sample means and average of

sample variances-covariances. The detailed procedure will be discussed in section 6.3
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o Interpret and Identify Out-of-control Signals

Once the control limits for the major elements are established, the sample data should
be continuously collected from the process and plotted against the control limits. The major
element control charts would show the out-of-control signal once the process means are
shifted. To detect the out-of-control signals and relate the signal to physical evidence of the
process will assist to eliminate assignable causes of the process. In this research, a set of zone
rules modified from the univariate case is introduced to enhance the capability of detecting the
out-of-control signals while apply the sample major elements control charts. Moreover, a
program written in Microsoft Excel is provided to assist user to recognize expected pattern for
all kinds of shift in process means. Both of the procedures will be discussed in details in

Section 6.4.

¢ Formulate, Implement, and Follow up Corrective Actions

Up to this point, the major element control charts provide the information to identify
the special causes, an act on eliminating the causes will be the immediate solution to redeem
the problems. However, a cosmetic solution will not result in any real, long-term process
improvement. It is very important to find the underlying root causes and formulate the
corrective actions to attack the problems. Therefore, an off-line analysis of the major elements
should be conducted. Furthermore, developing a serious plan of implementation and follow
up of the corrective actions will be an essential component of an effective multivariate

statistical process control.
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6.2 Sampling Plan for Major Element Control Charts

An essenual idea of using control charts is to collect sample data according to what
Shewhart called the rational subgroups or samples concept. Generally speaking, it means that
samples should be collected from a system whose variation is only subjected to common
causes. In other words, the samples should be selected so that if assignable causes are present,
the chance for differences between samples will be maximized, while the chance for
differences due to these assignable causes within a sample will be minimized. Whether or not
the objectives of the rational sample are achieved, they will determine the effectiveness and
efficiency of the control charts. Assume that the sample data are collected rationally from a
trivariate process. By appropriately selecting the other factors such as the size, frequency, and
number of samples would enhance the capability of detecting abnormal shifts in process

means while the major element control charts are used.

6.2.1 Selection of Size, Frequency, and Number of Samples

The major element control charts are developed from measurements of a set of
particular quality characteristics of a multivariate process output. These data are reported in
small number of samples of constant size, usually from 6 to 10 consecutive pieces for a
multivariate process that monitors three variables, with samples taken periodically. A data
gathering plan must be developed and used as the basis for collecting, recording and plotting

the data on the major element control charts.
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6.2.1.1  Samples Size

The samples should be chosen such that opportunities for variation among the units
within a sample are small. If the vanation within a sample represent the piece-to-piece
variability over a very short period of time, then any unusual variation between samples would

reflect changes in the process that should be investigated for appropriate action.

Based on the studies in Section 4.4, the sample should typically contain 8 to 10 pieces
consecutively during the initial study of a trivariate process. Also, produced pieces must
represent only a single process. The intention is that the pieces within each sample would all
be produced under very similar production conditions over a very short time interval with no
other systematic relationship to each other. Further, the sample size must remain constant for

all samples while plotting the major element control charts.

6.2.1.2  Number of samples

From a process standpoint, enough samples should be gathered to assure that the
major sources of variation have had an opportunity to appear. Determination of the number
of samples very often depends on the production rate. Although large number of samples
would provide a sufficient amount of data for accurate computation of the control limits, it
would delay the use of control charts if the production of samples takes too long to complete.
From the simulation study in Chapter 4, a minimum of 35 samples or more containing about
400 or more individual readings of each variable collection gives a good indication of the
process’s stability. If the process is stable, good estimates of the process location and spread

can be obtained.
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6.2.1.3  Frequency of Sampling

As with any control charts, the frequency of samples is a function of the production
rate, the cost of inspection, the failure rate, and the cost of failures. Yet, the goal of the major
element control charts is to detect the changes in the process over time. Samples should be
collected often enough, and at appropriate times, that they can reflect the potential
opportunities for change. Such potential causes of change could be due to work-shift changes,

unskilled operators, warm up trend, or new raw material lots, etc.

During an initial process study, the samples themselves are often taken consecunvely
or at a short interval, to avoid any factors that can contribute to the instability of the process
over a brief period. As the process demonstrates stability (or process improvements are
made), the time between samples can be increased. Sample frequencies for ongoing

production monitoring could be twice per shift, hourly, or some other feasible rate.

6.2.2 Supplementary Tool - Bootstrap Percentile Control limits for Major Elements

In some practical applications, it is unable for us to follow the sampling plan suggested
in the previous section due to the manufacturing conditions. Moreover, the sampling
frequencies are limited because of concerns related to the production rate or the inspection
cost. The total number of observations is usually limited, or it takes a long time period to
collect a suitable size of sample data in the types of production environment described earlier.
When the total number of observations is too small, say 150 observations for a trivariate
process, it is difficult to obtain good estimates for the process parameters, and to ensure the

independence between the consecutive samples. Thus, the control limits can not be
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appropriately estimated when the two assumptions do not hold. In such a situation the
bootstrap percentile method can be used to estimate the control limits for major elements, and

the procedure is introduced below.

6.2.2.1  Theoretical Background

The theoretical development of bootstrapping concept was introduced by Efron
(1979) to estimate the sampling distribution of a given statistic. There are few advantages for
considering the use of bootstrap. First, the bootstrap is a computer intensive resampling
procedure that does nort require a priori distribution assumption. Second, it was developed to
find the distribution of statistic when the distribution is not known. A large body of research
on and applications of the bootstrap have accumulated in 1980's and 1990's. Nevertheless, the
most important work on the bootstrap applicable to process control is related to the
assessment of confidence intervals. Hall (1989) gives a theoretical comparison of the different
bootstrap methods that can be used to determine the confidence intervals. Related discussions
are given by Efron (1987), Diciccio, and Romano (1988). Efron (1990) proposed a percentile
method, with modifications, to obtain estimates of percentile of a sampling distribution. The

complete works are documented in Effron and Tibshiranis (1993).

A number of articles discussing the use of the bootstrap with respect to quality have
recently been published. Gunter (1991-1992), in a series of papers, discussed Efron's
percentile method and considered application of the bootstrap to the assessment of process
capability for hole-drilling errors and life test of a compressor. In addition, Franklin and
Wasserman (1992) had discussed the use of the bootstrap lower limits on process capability.

In 1992, Bajgier first proposed bootstrap approaches for assessing process control limits for a
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X control chart. The Bajgier's approach assumes that the process is stable and in control,
when the control limits are assessed. Recently, Seppala et al. (1995) proposed to use within
group variance model for estimating process variances instead of using pooled variance
estimates in Bajgier’s approach when using the bootstrap to assess control limits.

Furthermore, Sepala et al. (1995) has extended their applications of percentile bootstrap

method to estimate the process control limits for X control chart.

Along the development of the bootstrap method with respect to statistical process
control, the bootstrap is not much discussed or considered to use for designing multivariate
process control charts. Liu and Teng (1996) suggested that perhaps combining the data depth
approach (Liu 1990, and Liu and Sigh 1993) and the moving blocks bootstrap method may

lead to nonparametric approach for statistical control of dependent multivariate observations.

In the application of the major element control charts, the percentle bootstrap
method suggested by Seppala et al. (1995) is adopted to improve estimates of control limits.
Via simulation, the comparative effects of control limits estimated by the bootstrap percentile
method versus the theoretical control limits are evaluated under the combinations of different
level of sample size and number of samples. The application procedures of the bootstrap
resampling and percentile control limits for the major elements are discussed in the successive

sections.

6.2.2.2  Bootstrap Resampling Algorithm

The general bootstrap resampling algorithm (Efron, 1979) is as follows:
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1. Initiate an iteration counter i = 1 and set B, a large number (1000-2000).

2. Draw a random sample X|, X,,---, X, of size n from the initial sample vector

X, X,,..., X, with replacement, and compute the bootstrap value for the statistic

of interest, T, =T(X[, X;,..., X).
3. Ifiequals B, stop. Other, incrementito i +1, and repeats step 2.

The bootstrap algorithm needs to be modified to take advantage of variance reduction
techniques that are typically used in Monte Carlo simulations. In the general bootstrap
resampling procedure, it is assumed that each observation has an equal probability of selection
for a bootstrap sample. The bias will occur if there are unequal proportions of these
observations in bootstrapped samples. A computer intensive procedure provided by Davison
et al. (1986) guarantees equal probability of observations in the pooled bootstrap samples.
The procedure, called balanced bootstrap algorithm, is modified by Seppala et al. (1995) for
assessing process control limits from a series of k sample vectors of sample size n collected
from an in-control process, where N is the total number of observation available for bootstrap

sampling, is described as follows:

1. Obrain the resample size, B, by finding an integer, A, such that B=Ak > 1000

(minimum number of resamples required to obtain accurate percentile estimates).

2. Replicate the original N observation vectors A times for a total of Bn observation
vectors (note that balance is achieved since each observation vector occurs A

times).
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3. Randomly permute the AN observation vectors.

4. Obrain 7 consecutive observation vectors with replacement B times from AN
permuted observation vectors, B sample vectors will be drawn at the end of

resampling

5. For each bootstrap sample, compute the statistic of interest 7, , { = 1, 2, ..., B.

For the application of the major element control charts, the interest T is the

sample major elements.

6.2.2.3  Percentile Control Limits

After bootstrap resampling for B times, we will obtain B statistics of interest results,
T, . The non-parametric percentile will be used to estimate the control limits at o level. To
estimate accurately, the interpolation will be used to determine the percentile control limits.
Let y(1), ¥(2)....,y(m) be a set of ordered statistics for a set of m observations. Further, let

be the greatest integer that is less than or equal to (m+1)p to find the g value for p percentile.

y())+((m+1)p =)y +1)=3()) ifl<j<m
g, =101 if j<1
y(m) if j=m

Thus, to find control limits, we calculate the interpolated /2 and (1-a/2) percentiles

using the 7 ordered observanions of the bootstrap estimate of the sampling distribution of

(X, , X, X, ).
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6.2.2.4  Simulation Results and Conclusions

This research has designed a plan of simulation to study the best resample size when
the number of sample observations of an in-control trivariate process is limited between 150
and 400. The observations can be regrouped with the sample size equals to 6 and 8, and the
number of samples is at 25 and 50 levels in each case. The resample size, B, used to run

bootstrap resampling is chosen at four levels: 1000, 1500, 2000, and 2500.

Details of this study are presented in Appendix V that include the design and analysis
of the simulation study, and the SAS program used to run the Bootstrap Resampling and to
compute Percentile Control limits. The following conclusions are drawn based on the

simulation results and analyses.

e For the sample size of 6 and 25 samples, 2500 resamples will give the best estimates of
the control limits for the major elements which contains the smallest average of bias is
between 1.5% and 2.5%, when compared with the theoretical true control limits.

¢ While the number of observations increased to 400 for 50 samples of size 8, 1000
resample is enough to give the estimates of the major elements control limits with

average bias of 3.86%.

e Overall, for the number of samples between 25 and 50 does not make much
difference between the percentile control limits and theoretical control limits. We
suggest using the larger sample size (e.g. select sample size of 8 instead of sample size
of 6) while the number of sample data can be collected is limited. Then, run bootstrap
resampling at size between 1000 and 2000. This should give very good estimates of

control limits for the major elements.
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6.3 Checking Sample Data of the Initial Study

Before the major element control charts can be appropriately constructed, the sample
data collected for the initial study must be examined to show the stability of the process. The

procedure includes three steps. First, check the correlation coefficients among variables by

plotting Z** suggested in Chapter 2 for each sample correlation. Then, examining variance-
covariance matrix of each sample by log|S|. Finally, if both correlation and variance-
covariance among sample data do not show any abnormal pattern, the control limits for major
elements can be calculated. In this case, plot sample major elements to find out whether the
process means have changed. When the abnormal pattern of plotted data occurs, it is
necessary to identify what causes the problem. Further, make effort to remove the problem,
recollect the sample data, and check them again until the stability of the process is assured. In
the following section, a trivariate example will be presented to show how the necessary

computation should be carried out.

6.3.1 Checking the Correlation among Variables by Z ™

For a tnivaraite process, there are three plots for three correlation coefficients
respectively. First, calculate correlation coefficient matrix of each sample data. Let r;;,, bethe

" sample correlation coefficient between variable / and .

L+r
Then, Z, —llog i
2 1

idm —
- ri.lm

wherez=1,2,...,k;/,m = 1,2, 3 for a trivariate process; and / # m.
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3Z,m +1;

iim

23Z, 1 + 33, 4y = 51
- . . —, N=n-1
4N 96N *

z

=Z idm—

ifm
where k is the number of samples, and n is the sample size.

Compute the control limits, Z + A,/VariZ o i, as references to examine the plotting

pattern of Z™*, where Z" is the average and Var(Z,:,) is the variance of Z,,. A is a pre-

selected coefficient, say 3. The data should be randomly distributed as the plots in Figure 6.1.
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Figure 6.1  Z,, plots for A Trivariate Process
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6.3.2 Checking the Variance-Covariance among Variables with log|S]

To check the variance-covariance of each sample, calculate the determinant of sample

variance-covariance matrix first. Let S; be the variance-covariance matrix of /* sample. Then
take log of the determinant of S;, as log|S;|. A chart with 100(1 - )% probability control

limits is constructed as

UCL = logls] + Z,, (fvar(iogs))

CL= logISI

LCL=loglS|-Z o (1 [var(iog]s] ’)

where log|S| is the mean of log|S,|, var(log|S|)is the variance of log|S,|, and Zus is

/2 percentage point of the standard normal density. The control limits here are only used as

references. A set of sample data must not have an abnormal pattern, and it should be

randomly distributed as in shown the Figure 6.2.

1. log |S]

0 10 20 30 40 50

Figure 6.2 log[S,| Plot for Checking the Sample Variance-
Covariance
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6.3.3 Evaluating Process Means with the Major Element Control Chart

Computational procedure for the major elements had been discussed in a great detail
in Chapter 4. This section simply summarizes the equations for calculation of sample major

elements and construction of control limits.

M,, =()?,., -)?,fs”,1=1,2,..., p.

M, is the  sample major element of variable /.

!

A

— = —ii'Mi,ll’Ai.l =0
Let Xu - X, =4, find M;.I = lAiJI
0 A =0
R k-1
ver, - [%][7);(

CL, =0

Ryl (k-1
LCL =~ (II—R!II_IJ(—)”I/C_\JZ&_GI 2

where k is the number of samples, and 7 is the sample size. All other notations are as defined

earlier.

In the major element control charts, M/, and control limits for each variable are

plotted against to each other. For a in-control process, the sample major element should be
randomly distributed around the center line which equals to zero. Figure 6.3 is a sets of major

element charts with their control limits.
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Figure 6.3  Major Element Charts for an In-control Process
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If any abnormal signal shows up in the major element control charts, it should be
analyzed and the assignable causes should be identified. Then, act on the special cause to
improve the process. Reevaluate the process variability and process means, revise the control

limits of major-element control charts.

6.4 Interpretation of Major Element Control charts

As the research attests that an expected pattern will show whenever a shift occurs in
the process means. Nevertheless, the shifts must be detected as soon as it occurs in most
practical application. Therefore, a set of zone rules modified from the univariate case is
developed to enhance the capability of detecting out-of-control signals of the major element
control charts. In addition, the expected pattern of major elements can be used as references
for both on-line monitoring and off-line analysis. A user-friendly program is developed in
Microsoft Excel, which is displayed in section 6.4.2 to assist user to apply the major element

control chart.

6.4.1 Zone Rules for Out-of-control Signals Interpretation

Some of the tests in univariate control chart applications are referred as "zone rules"
which are developed on the basis of a normal distribution of the sample statistics and their
statistical independence. (DeVor et al.,, 1992) To set up zones for the major element charts to
be able to extend the zone rules of X control chart appropriately, the probability of each zone
must first to be evaluated. Because the sample major element follows an adjusted chi-square
distribution with one degree of freedom, and the upper and lower control limits of major

elements are mirror image of each other, the zone probability should be calculated using chi-
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square distributions. In this section, first we define and calculate the probability of the zones.
Then, display examples for each zone rule and compute the risk for applying the zone rule to
identify out-of-control signals. However, the zone rules explained in this section are just a
theoretical proposal. The rules need to be applied in the practical field and further modified

according to the pracucal situations.

2
X
Probability Distribution Function

99.73% —

P

95.45

68.27"

50

2
Figure 6.4 X1 Probability Distribution Function

6.4.1.1  Probability of Each Zone

The upper control limit for one side chi-square distribution is set at =027%. For

applying the tests, the control chart is divided into three sections between the upper control
limit and zero line. Zone Cis set from zero line to probability level at 68.27% at which point
is mean of the sample major elements. Zone B is from upper boundary of Zone C to

probability level at 95.45% and Zone A is from upper boundary of Zone B to the upper
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control limit. Figure 6.4 displays the probability distribution of a chi-square variable with one
degree of freedom along illustrates probability level of the three zones defined earlier.
6.4.1.2  Combined Chi-square Distribution

For the combined chi-squared distribution, we recall that the sample major element,

()? = X , )IS " is distributed as (ll—l;'-ll-lj(%;—l) times a chi-square variable having 1 degree
of freedom.

Let v=%;,,,then

P(xl2 > o)= . 6. 1)

P(? 20)=P((x? 20)NZz20)+P((x? 2v)NZ <0)

=P(z20[ 47 2v)- Bl 2 0)+ Pz <0[x} 2v)- By} >v)

Let P(ZZOI Xt Zu)-P(xf 20)=P(+ X2 2+u)

P(Z<O| A Zu)~ P(;(,2 20)=P(—x,2 <—u)
Also P(Z20|x? 20)=P{Z <0|z? 20)=0.5, 6.2

Apply Egs. 6. 1and 6.2, P(+ x; 2 +U)= P(— x: < —U)= 0.5a
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The probability and risk of each zone while the sample major element fell in are

calculated in Table 6.1 and illustrated in Figure 6.5.

Table6.1  Probability of Three Zones

Chi-square Distribution Combined Chi-squared Distnbution
Zone|v| P(x*<v) o 0.5P(+1%; < V) or 0.5P(-x2, >-V) | P(+1) >V) or P(-X?, <~V)
C Jlf e8.2/% 31.731% 34.13% 15.87%
B (4] 95.45% 4550% 3777% 2.28%
A |91 99.73% | 0.270% 4987% 0.13%
: UCLa2=0.13%
A
!
a2=2.28%
B
, a2=15.87%
o C
C
: o2=15.87%
B
a2=228%
‘A
- LCLa2=0.13%

Figure 6.5  Probability and Zones for Major Elements Control
Chart
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6.4.1.3 Zone Rules

In the previous section, we have established the upper and lower control limits, and
the three zones, which will be used to identify the unnatural partern of a sequence of sample
major elements. However, before the presence of special causes can be tested on-line by
applying any zone rules, the process has to be brought into a state of statistical control.
Therefore, we will discuss the appearance of a process in a good statistical control first. Then,
five zone rules based on the simulated data and their usage in major element control chart are
summarized with graphic illustrations. These tests will provide the basis for the statistical
signals, which indicates to us that the process has undergone a change in its mean level.
Nevertheless, each test may as well as contain certain level of probability that provides false
alarm while it is applied. Consequently, the risk of each test is calculated along with the

lustrations.

Dr. Deming (1993) pointed out in "Out of the Crisis" that the rules have to be made
in advance, for use in the future. Further, any rule as a practical matter, must be constructed in
the absence of full information about the future. However, the more practical information
about unnatural patterns will not only improve the chances of identifying the special cause, but
also reduce the probability of false alarms. Afterwards, we like to suggest collecting the

process information as much as possible to improve the capability of each zone rule.

Rule 0. Random Pattern

When a process is in control, there occurs a random pattern of variation, which is
dlustrated by control chart in the Figure 6.6. The sample results are scattered evenly around

zero line. Because the sample major element with direction is distributed as the combined chi-
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square distributions, about 50% of all in-process sample results will be randomly distributed
above zero line, and the other half will be below the zero line. Further, we expected certain

proportion of sample major elements to fall in Zone A and Zone B.

Figure 6. 6  An Example of Major Element Control Chart for In-
Control Process

Rule 1.  Extreme Points

Rule 1 is applied to identify the extreme points - points beyond the 99.73% control
limits. The specific rule is that while the sample result is located beyond Zone A, the risk of
misidentification out-of-control signal is 0.27%. Figure 6.7 shows several such the
occurrences as by identified this rule, indicating a special cause that may have caused out-of-

control signals.
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Figure6.7  Examples of Extreme Points

Rule 2.  Two out of three points in Zone A or beyond on one side of the center line.

P(+x? > B)=P(-x? <-B)=2.28%

risk, = P((1 out of the first 2 points > B)and (3rd > B ))

= @ (2.28%)(47.72%) = 0.0496%

Similarly,

risk_ = P((1 out of the first 2 points < —B)and (3rd < -B ))

= G J (2.28%)*(47.72%) = 0.0496%

Total risk = risk, + risk_ = 0.0992%
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P

Figure 6.8  Two out Three Points in Zone A or Beyond

If there are two of any three successive sample results in Zone A or beyond, it signals
the out-of-control condition of the process. Figure 6.8 presents several possible occurrences

of Rule 2. The chance of false alarm is around 0.0992%.

Rule 3.  Four out of five points in Zone B or beyond on one side of zero line.

P(+%? >C)=P(-x} <-C)=1587%

risk, = P((3 out of the first 4 points > C)and (5th > C ))

4
= (3J(15.s7%)‘ (34.13%) = 0.087%

risk_ = P((3 out of the first 4 points <-C)and (5th < -C )

4
= ( 3](15.87%)‘ (34.13%) = 0.087%
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Figure 6.9  Four out of five points in Zone B or Beyond

Four out of five consecutive sample results in Zone B or beyond presents the out-of-
control condition. The probability of misidentification the out-of-control signal is about

0.174%. Figure 6.9 presents several examples for Rule 3.

Rule 4.  Six out of seven points within Zone C on one side of the zero line.

P(C>+x? >0)=P(0<—x? <—C)=34.13%

risk, = P((S out of the first 6 points > C)and (7th > C ))

6
= (SJ(34.13%)’(15.87%) =0.15%

risk_ = P((S out of the first 6 points < -C)and (7th< -C ))

6
= (5)(34.13%)5(15.87%) =0.15%
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Figure 6. 10  Six out of Seven Points within Zone C

Six out of seven consecutive points fall within Zone C that indicates the process mean
shifted upper or lower. The probability of misidentfication of the out-of-control signal is

about 0.30%. Figure 6.10 presents several examples for Rule 4.

Rule 5.  Eight or More Successive Points run above or below Zero Line

P(+x? >0)=P(-x2 <0)=50%

risk, = P(AIL8 points are on one side of center line)

=(50%)° =0.391%
Total risk = risk, + risk_ = 0.391%x2=0.782%

Rule 5 considers a long run of eight or more sample data strictly either above or below

zero line.  The presence of such a run indicates that the evidence is strong that the process
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mean has shifted from the grand mean. Figure 6.11 illustrates the run of eight points that fell
above or below the zero line. The risk of this rule is 0.782%.

Figure 6. 11  Eight or More Successive Points above or below the
Centerline

6.4.1.4  Probability of False Alarms Using Multiple Rules

The probability of any zone rules applied from above is a risk of false alarm. These
zone rules are not all independent or mutually exclusive to each other, nevertheless, the
probability of their joint occurrence is relative very small. In practice, one can approximate the
total probability of false alarms of all the various zone rules as the sum of their individual risks.

The following example illustrates on such estimation.

Suppose only zone rules #1 and #2 are used for the interpretation of an Major

Element chart where the center line is set at zero line.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

The risks of false violation associated with these two zone rules are given as follows.

a, = risk for the Zone #1 = 0.0027

a, = risk for the Zone #2 = 0.000992

o, = Prob{(one of the first two > B) and (the 3® > UCL)} = 0.000029
Thus the probability of Type I errors in this occurrence is

Risk = 1-(1-at, )(1-0t,) = 0.00369=0.369%

6.4.1.5  Probability of False Alarms for Multivariate Process

The zone rule is applied to each major element independently, however, we like to find
out the probability that zone rules used in each major element are giving the false alarm. The
risk can be calculated as:

Risk = P(ar least one major element control chart give false alarm)

=1-TJa-a),

where p is the number of variables, and @, is the risk of applying any of the zone rule to

vanable /.
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6.4.2 Reading the patterns

For the off-line analysis, the expected directional patterns of sample major elements
are produced as an aid for user to identify the substantial change in process means. Based on
the methodology developed in Chapter 3, Figure 6.12 and 6.13 illustrate the expected
directional patterns for each possible combination of shifts in the means for the processes
monitoring with three and four variables. In addition, Figures 6.12 and 6.13 are the displays of
a Microsoft Excel program that generates all types pattern for different process parameters
with different expected size of shifts. To interpret the pattern, follow the signs on top of the
chart correspondingly. “+” indicates the process mean of the corresponding variable has
shifted upward, “0” indicates there is no shifts in the corresponding process mean, and “-“
implies that the shift in the corresponding variable is downward. The magnitude of each stack

bar is the average of the shift size.

To use the Excel program to generate expected pattern, simply change the correlation
among variables and the expected size of shifts. Note that the pattern will remain the same in
each combination of the shifts. Only the size of the stack bars reflecting the change in each of
the process means will be varied according to expected value of the directional major

elements.
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Chapter 7

SUMMARY, DISCUSSIONS AND RECOMMENDATIONS

7.1  Summary and Discussions

The control charts for major elements, developed in this research, have shown to
be not only effective, but also informative for the control of multivariate normal process
means. These charts are effective because they are highly sensitive to any one or more
shifts in the means. They are informative because each chart is capable of independently
displaying a unique out-of-control pattern of the sample major elements that are
associated with only the shifted variable in question. These results were shown by the
theoretical expectations of the sample statistics and by the analysis of simulated sample
data of processes with various out-of-control scenarios. Also by simulation, the sample
major elements were demonstrated to be robust to a wide spectrum of variance-
covariance structures. By comparison, for example, the sensitivity of the T statistic was

shown to depend on the levels of correlation among the variables.

For actual applications, a step-by-step procedure was recommended for the set-up
and interpretation of the major element control charts. Issues related to sampling
strategy, including the use of bootstrap sampling for better parameter estimation when

sample database is limited during initial chart construction, were discussed with some
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suggestions. To aid in routine chart interpretation, a set of zone rules similar to those

used in reading X charts was developed for the analysis of each of the major element

charts.

The proposed method calls for constructing and/or maintaining a set of p sample
major element control charts, one for each of the p variates. To plot the control charts,
the p sample major elements and their control limits are computed for each sample i by

the following equations.

A,

—=M,,. A, #0
M;, = IAUI e

0 4, =0

M, is the i* directional sample major element of variable /, where A,, = X,, — X,

i

and M, =(;\7,.J—/?,)zs”,l=l,2,...,p .

Control limits at an a level for the major element control charts are:

Ryl \ k-1
vet, {ITRTIIW)X

CL, =0

R k-1
LCL, = -(”T”IIJ(—HTJXTJ_M

where & is the number of samples, and 7 is the sample size.
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To illustrate the application of sample major elements that are derived from the
quadratic form, Q, of a multivaﬁate normal distribution, eighty-eight simulated data sets
with replicates of a trivariate normal process were analyzed in detail. The control charts
of sample major elements for all cases did show clearly recognizable directional patterns
for all twenty-six mean shift combinations of a trivariate normal process with many
different means, variances and correlations. These sample distributional patterns were
found to be in agreement with the corresponding patterns expected from theory.
According to the simulation results, fifty samples of size 10 should be collected before

control limits are calculated to assure a reasonable reliability in parameter estimation.

Since the proposed control charts assume that the variance-covariance structure
remains in statistical control, it is essential to have each sample checked for stability of
both the variances and the covariances or correlations. Two additional control charts,
one for the sample variances and the other for the sample correlations were presented as
a possible supplementary procedure to the construction and operation of the major
element control charts. It is noted, however, these supplementary charts are not capable
of making diagnostic analyses of the specific nature of out-of-controls in variances and

correlations.

Lastly, one major limitation of the sample major element control charts is that
they are not applicable for those processes where samples of a size greater than one can

not be taken meaningfully for statistical control.
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7.2 Recommendations for Future Research

Although recent work in multivariate process control has aimed mostly at
improving the control charts’ effectiveness for practical applications, the actual use of
multivariate control still remains very sporadic at best. One possible major reason of
this seemingly lack of interest could be that few practitioners, including engineers, really
think of multiple variables as a set with correlations. Another important reason might
be due to the general shortage of success stories with multivariate control charts. A third
one that is more directly relevant to this research is that these newer control charts have
become either more complicated or more difficult statistically for typical process and
quality engineers. The proposed major element control charts appear to be more user
friendly both in their constructions and interpretations. To further develop
methodological and operational improvements in multivariate process control, some
areas for future research are suggested below from both the practical and theoretical

perspectives.

7.2.1 Practical Applications

Since the three reasons mentioned above are themselves inter-related, or
correlated, a “multivariate” approach is needed for future research in multivariate process
control. It is, therefore, suggested that research in this area must involve heavily, if not
exclusively, the practicing engineers, with the statisticians serve more as advisors rather

than the sole players.
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Nearly all the known methods of multivariate process control either assume,
explicitly or implicitly, a constant variance-covariance structure; or allow changes/shifts
in all process parameters to occur without specific identifications. In the latter case the
chart(s), similar to the T chart, are designed only to display a shift without regard to its
nature. In either case, a better understanding of the inter-relationships of or the mutual
effects between the mean vector and the covariance matrix will enhance the effectiveness
of these charts in practice. Such fundamental understandings about, for instance, the
physical meanings of a covariance change, are needed in order to improve the design and
operation of multivariate control charts for variances and/or covariances. Another
question of practical importance is how physically a change in the mean(s) will or will

not affect a change in one or more of the variances and covariances, and vice versa.

7.2.2 Theoretical Development

Some areas for future research from a more theoretical perspective are suggested

as follows.

1. One immediate research topic to follow is in the development of an exact or
approximate probability distribution for each of the minor elements. Such could
enable one to utilize the complete sample information for more detail analysis of out-
of-control signals because of possible shifts in other process parameters in addition to

the means.
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2. The zone rules proposed for the interpretation of the major element control charts
may be further improved, perhaps with experiences from actual field applications.
While it is desirable to minimize the probability of false alarms, the corresponding
probability of Type II errors should be considered in the design of the zone rules.
Furthermore, the zone rules may be programmed for on-line, computer control and

diagnosis.

3. To improve the sensitivity in detecting very small shifts in the means, while keeping
the sample size from becoming too large, alternative statistics such as the CuSum and
EWMA of sample major elements may be investigated for their advantages and

disadvantages.

4. The variances and covariances of a process are subject to change either by themselves
or by shifts in the means. Further research is needed in the development of schemes
for overall controls that are more effective and/or more informative than the use of a
generalized variance recommended in this research. As mentioned in (1) above, the
statistical properties of sample minor elements may be studied for possible

applications.

5. Performance evaluation of the major element control charts should be conducted in
actual applications. The actual sample data may be used also for comparative analysis
between the major element and other well-known multivariate control charts. One

commonly used measure for the speed of signaling a process change is the Average

Run Length (ARL). Some theoretical work is needed for the calculation of the ARLs
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of sample major element (and possibly also sample minor elements) both when the

process is in control and is out of control.
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Appendix L. SAS Program for Data Simulation and Sample
Major Elements Computation
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Title “Trivariate Data Simulation, Sample Major Element and Control
Limits Computation”

proc iml;
start data; /* data generator */

/* Basic Information */

do pl=1l to 1350; /* Sample Index */
in=j (n,1,pl);

s_no=s_no//in;

end;

size=k*n; /* Size of Observations */
c=cinv(alp,1); /* Chi-square Value at Alpha level */
sig=s*r*s; /* Variance Covariance Matrix /
l=half(siqg): /* Cheloski Factorization */

/* True Upper Control Limits */

dR=det (r); dRll=det(r[2:3,2:3]):;dR1=dR11/dR;
dR22=det (r[{1 3}, {1 3}]):;dR2=dR22/dR;
dR33=det (r[1:2,1:2]):; dR3=dR33/dR:

M1 _E=((k-1)/(n*k))*dRl*c:

M2 _E=((k-1)/(n*k))*dR2*c;
M3_E=((k—l)/(n*k))*dRB*C;

/* Observations Generation, X~N(0,I) *x/
do kl=-1 to 1 by 1;
do k2=-1 to 1 by 1;
do k3=-1 to 1 by 1;
xl=(normal (repeat(p, 1, size)));
x2=(normal (repeat (p+3256,1,size))):
%3=(normal (repeat (p+103256,1,size))):;
=x1//%x2//%3;
Y=t (1) *x;
ul=mul+kl*a*s[1l,1];u2=mu2+k2*a*s([2,2];u3=mu3+k3*a*s[3,3];
yl=yt[l,1l:size]+repeat(ul,l,size);
y2=yt (2, l:size]+repeat(u2,1,size);
y3=yt[3,1l:size]+repeat(u3,1,size);
y=yyl//y2//y3; zl=tly);z=z//21;
end;
end;
end;

/* Sample Covariance */

do j=1 to k;
v=n*(j-1)+6501; m=n*j+6500; xj=z([v:m,];
sum=xj[+,]1;
xpx=t (xj) *xj—-t (sum) *sum/n;
Sp=diag (1l/sqrt(vecdiag (xpx))}:
corr=Sp*xpx*Sp;
mean=sum/n;
xj=xj-repeat (mean,n,1);
ss=xj [##,]:
std=diag(sgrt(ss/(n-1)));
covar=std*corr*std;
cov=cov+covar;
meanS=meanS+mean;

end;
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/* Average Sample Variance-Covariance */
sigma=cov/k; isig=inv(sigma);
isigl=isig(1l,1];isig2=1isigl[2,2];isig3=isig[3,3];
meanX=meanS/k;
var=vecdiag(sigma);
v=diag(l/sqrt(vecdiag(sigma)));
cor_base=v*sigma*v;

R=det (cor_base);

Rll=det (cor_base([2:3,2:3]); RI=R11l/R;
R22=det (cor_base[{1 3}, {1 3}1); R2=R22/R;
R33=det (cor_base(1:2,1:2]); R3=R33/R;

ML ucl=((k-1)/(k*n))*Rl*c;

M2 _ucl=((k-1)/(k*n))*R2*c;

M3 ucl=((k-1)/(k*n))*R3*c;

Mi=M1 _E| M1 _ucl||M2_E|[M2_ucl||M3_E||M3_ucl;
print meanX; print cor_base sigma isig;
print Mi;

do 1=1 to 1350;
vli=n*(1-1)+1; mk=n*1l; xi=z[vl:mk,]:
meani=xi[+,]/n;
md=meani-meanX;
ml=md[1l,1]; m2=md([1l,2]; m3=md{1, 31:
mll=abs(ml)*ml*isigl;
m22=abs (m2)*m2*isig2;
m33=abs (m3) *m3*isig3;
mai=mll|im22||m33;
mdi=mdi//mai;

end;

/* Output Directional Sample Major Elements */
filename tri_3 'md0025°';

file tri_3;

do i=1 to 1350;
M1E=mdi{i,1]};M2E=mdi{i,2];M3E=mdil[i,3];

put M1E 10.5 +1 M2E 10.5 +1 M3E 10.5 +1 i 4.0;
end;

closefile tri_3;

finish;

/* Input Information */

r={1 0.7 0.9,
0.7 1 0.6,
0.9 0.6 1};

s={1.6 0 O,

0 1.2 0,

0 0 0.9}
k=50; n=10;
cov={0 0 O,

000,
0 0 0},

meanS={0 0 0};
alp=0.9973; rep=25;
mul=3; mu2=15; mu3=9;
a=0.25;p=125;

run data;
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Appendix II.  Tables of Input Process Parameters and Simulated
Process Parameters for 22 Simulation Runs
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Table I1.1: Input Process Parameters and Simulated Process Parameters for Run 00 & 01

Run: 00

Run: 01

All Positive Correlation Coefficients

Two Negative and One Positive Correlation Coefficients

o p o P B o P
5 © |ShiftSizefor| 3 1.6 1 0.7 0.9 3 1.6 1 -0.7 0.9
Eg Simulation | 45 1.2 0.7 1 0.6 15 1.2 0.7 1 -0.6
e 9 09 | 09 | 06 | 1 9 0.9 0.9 06 1
X, 5 R X, 5 R
+/-0255 | 29960 16520 1 0.6885| 0.9109 3.0767 1.5635 1 -0.7476 0.9017
15.0597| 1.2288| 0.6885| 1 05819  14.9506 1.1678]  -0.7476 1 -0.6311
8.9949| 0.9370| 09109] 0.5819] 1 _9.0390]  0.89907 0.9017]  -0.6311 1
X 5 R X % R
a +-050 |.3:0615] 15635 1 0.7081| 0.8881 3.0325 1.6125 1 -0.6842 0.9070
2 15.0482| 1.1678] 0.7081] 1 05973  15.0274 1.2130]  -0.6842 1 -0.5804
p 9.0316] 0.8991| 0.8881] 0.5973| 1 9.0254 0.8832 0.9070]  -0.5804 1
'*_§ f, 55 R f, ) R
-(% 4105 |_3.0280] 16620 1 0.7091| 0.9101 3.1069 1.5907 1 -0.6916 0.9046
15.0380] 1.2000] 0.7091] 1 0.6263|  14.9316 1.2207|  -0.6916 1 -0.5783
9.0360| 0.9579 0.9101| 0.6263 1 _9.0313 0.8871 0.9046| -0.5783 1
X, 5 R X, o R
+-15c | _3.0369] 1.5428| 1 0.7098| 0.8949 2.9892 1.5940 1 -0.7077 0.8909
14.9921| 1.1691] 0.7098| 1 0.6160|  15.0586 1.1978]  -0.7077 1 -0.6169
9.0057| 0.8975{ 0.8949| 06160| 1 8.9697 0.8903 0.8909| -0.6169 1

oyl
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Table I1.2: Input Process Parameters and Simulated Process Parameters for Run 10 & 11

Run: 10 Run: 11
All Positive Correlation Coefficients Two Negative and One Positive Correlation Coefficients
2 H o P M o P
3 E Shfft Sizg forf] 3 1.6 1 0,2 0.1 3 1.6 1 -0.2 0.1
=g Simulation | 45 1.2 0.2 1 0.15 15 1.2 -0.2 1 -0.15
a
9 0.9 0.1 0.15 1 _9 0.9 0.1 -0.15 1
X, S R X, 5 R
+-0.25c |2:9582] 1.5622 1 0.1917} 0.1740 3.0024 1.6707 1 -0.1803 0.0031
16,1146 1.1759 0.1917 1 0.1346 15.0096 1.1416 -0.1803 1 -0.1662
9.0363| 0.9018{ 0.1740] 0.1346{ 1 _8.9445 0.89764 0.0031 -0.1662 1
X, S; R X, 3 R
@ +- 050 3.0580] 1.6707 1 0.2826| 0.0315 2,9793 1.5925 1 -0.1401 0.1434
§ 14.8847| 1.1416] 0.2826 1 0.1350 15,0258 1.2000 -0.1401 1 -0.1660
oé 8.9852| 0.8976| 0.0315 0.1350{ 1 8.9978 0.9286 0.1434 -0.1660 1
:‘_*95 ?, 53 R 7, 5 R
'UEJ +/-1.00 3.0156] 1.5957 1 0.2090] 0.0417 3.0049 1.6309 1 -0,1592 0.1684
14.9505| 1.1648| 0.2090 1 0.2357 16.0675 1.1344 -0.1592 1 -0.2263
8.9296| 0.8862| 0.0417] 0.2357| 1 _8.9935 0.9013 0.1684 -0.2263 1
X 5 R X i R
+/-1.5c 2.9608| 1.6454 1 0.2279] 0.0865 2.9514 1.6301 1 -0.2145 0.1802
14.9811] 1.1650] 0.2279 1 0.0733 14,9827 1.2371 -0.2145 1 -0.1943
8.9698| 0.9167| 0.0865| 0.0733] 1 8.9420 0.8270 0.1802 -0.1943 1

1541
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Table I1.3: Input Process Parameters and Simulated Process Parameters for Run 20 & 21

Run; 20 Run: 21
All Positive Correlation Coefficients Two Negative and One Positive Correlation Coefficients
2 B o P B c P
§_ g Sh.ift Sizg for 3 1.6 1 0.3 0.8 3 1.6 1 -0.3 0.8
£ g | Simulation | 45 1.2 03 1 0.35 15 1.2 -0.3 1 -0.35
> 9 09 | 08 | 035 | 1 9 0.9 0.8 -0.35 1
X % R X % R
+/- 0.25G 2.8698| 1.6345 1 0.3269| 0.8152 3.0537 1.6475 1 -0.2492 0.7701
14.9942( 1.2313{ 0.3269 1 0.3579 15.0187 1.2044 -0.2492 1 -0.3246
8.9593[ 0.9025| 0.8152 0.3579] 1 _9.0183]  0.92284 0.7701 -0.3246 1
X K R X % R
P +/- 0.5¢ 2.8524] 1.6475 1 0.3692| 0.7999 2.9577 1.6005 1 -0.2553 0.7796
§ 15.0590{ 1.2044] 0.,3692 1 0.4372 15.0697 1,1649 -0.2553 1 -0.3587
05: 8._9563 0.9228] 0.7999| 0.4372 1 _8.9638 0.8802 0.7796 -0.3587 1
© X % R X % R
g +-1.00 3.1517|] 1.5182 1 0.3320] 0.8048 2.9245 1.6066 1 -0.2844 0.7995
15.0217] 1.1405] 0.3320 1 0.3799 14.8870 1.1190 -0.2844 1 -0.3393
9.9784 0.8774) 0.8048| 0.3799 1 _8,9995 0.9160 0.7995 -0.3393 1
X % R X % R
+/-1.50 2.9337] 1.6421 1 0.2774| 0.8079 2.9540 1.6045 1 -0.3708 0.8136
15.0611] 1.2126} 0.2774 1 0.3482 15.0663 1.2413 -0.3708 1 -0.4322
9.0274{ 0.9087| 0.8079| 0.3482 1 9.0199 0.9137 0.8136 -0.4322 1

w1
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Table I1.4: Input Process Parameters and Simulated Process Parameters for Run 30 & 31

Run: 30

Run: 31

All Positive Correlation Coefficients

Two Negative and One Positive Correlation Coefficients

o n o p u o p
5@ |ShiftSizeforl 3 16 1 0.85 | 04 3 16 1 -0.85 0.4
£ g | Simulation | 45 12 | 085 1 0.8 15 1.2 -0.85 1 -0.8
o 9 09 | 04 | o8 1 9 0.9 0.4 0.8 1
X % R X % R
40250 |_3:0630 15569 1 0.8333} 0.3279]  29443] 16588 1 .0.8523]  0.4071
15.0324| 1.1342] 08333] 1 | 07723] 15.0420] 1.2572| -0.8523] 1 -0.8014
8.0795| 08565| 0.3279| 0.7723| 1 80774 089415]  04071] 08014 1
X, % R X, 5 R
o | +r05s [30804] 16588 1 0.8868| 0.5216] 30647  18647] 1 0.8439]  0.3802
2 15.0722| 1.2572| o0.88e8] 1 | 0.8349] 149250 1.1801] -0.8430] 1 -0.7918
« 9.0314] 0.8941| 05216 0.8349] 1 0.0515| 09013 03802 -07918] 1
§ 7, o R z\=’, 5 R
& | i10s 29037 15474] 1 0.8483| 0.4188]  3.1231] 16150 1 08412]  0.3857
14.9492| 1.1837| 0.8483] 1 | 0.8133] 14.9067] 12350] -0.8412] 1 -0,8024
9.0078| 0.9011| 0.4188| 08133] 1 90443 09570/  0.3857) -0.8024| 1
X % R X % R
o.15s | 29165 1.6343] 1 0.8442| 0.3653]  3.1043] 15931 1 -0.8367]  0.3182
14.9442] 1.1769] 0.8442) 1 | 07835] 14.9178]  1.1464] -0.8367] 1 -0,7631
8.9834| 0.9029| 0.3653| 0.7835] 1 9.0463]  0.8800] 0.3182] -0.7631 1

134!
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Table I1.5: Input Process Parameters and Simulated Process Parameters for Run 40 & 41

Run: 40

Run: 41

All Positive Correlation Coefficients

Two Negative and One Positive Correlation Coefficients

()

2 n p n c p
5 [shiftSizefor| 3 16 1 095 | 09 3 16 1 -0.95 0.9
£ g | Simulation | 45 12 | 095 1 | 0.875 15 1.2 -0.95 1 -0.875
o 9 09 | o9 | o8| 1 9 0.9 0.9 -0.875 1
X, 5 R X, 5 R
40250 |_29333] 16435] 1 0.9509] 0.9071|  3.0547] 1.6084] 1 -0.9467|  0.8963
14.9432| 1.2203] 0.9509] 1 | 0.8819] 14.9660]  1.2084] -0.9467] 1 -0.8656
8.9715| 0.9082| 0.9071] 08819] 1 _9.0284| 0.90643]  0.8963| -0.8656] 1
X % R X 5 R
o | +-ose |3.1752 16084 1 0.9536) 0.8953|  3.0458]  1.5635] 1 | .0.9481]  0.9026
3 151350] 1.2084| 0.9536] 1 | 0.8659] 14.9744]  1.1808] -0.9481] 1 -0.8776
°§ 9.1095| 09064| 08953] 0.8659| 1 _9.0215|  0.8823]  0.9026| -0.8776] 1
S i L R X % R
& | +o10e 29452 16127] 1 0.9495| 0.9073|  3.0145| 15768] 1 -0.9473]  0.8851
14.9755| 1.2073| 0.9495] 1 | os770] 14.9679]  1.1912] -0.9473] 1 -0,8635
8.9926| 09327) 09073] 0.8770] 1 _8.9883)  0.8372| 08851 -0.8635) 1
X, H R X, 5 R
155 |_29966| 1.6636] 1 0.9543] 0.8984|  2.9528]  1.5382] 1 -0.9505|  0.8974
14.0978] 1.2236| 0.9543] 1 | o.s78s| 150538  1.1715| -0.9505] 1 -0.8798
9.0209] 0.9175] 0.8984| 0.8788] 1 8.9926]  0.8680]  0.8974] -0.8798] 1

144!
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Table I1.6: Input Process Parameters and Simulated Process Parameters for Run 50 & 51

Run: 50 Run; 51
All Positive Correlation Coefficients Two Negative and One Positive Correlation Coefficients
» H o P H o p
‘g é Shfft Sizg forl 3 0.06 1 0.7 0.9 3 0.06 1 -0.7 0.9
£ g | Simulation | 45 | o042 | 07 1 0.6 15 0.12 0.7 1 0.6
o 9 | 009 | 09 | os 1 9 0.09 0.9 06 1
X, 5 R X, 5 R
+-0.250 3.0010] 0.0591 1 0.7133| 0.8911 3.0003 0,0599 1 -0,7021 0.8909
15.0003} 0.0125| 0.7133 1 0.6048 14,9997 0.0124 -0.7021 1 -0.6101
8.2990 0.0892( 0.8911] 0.6048 1 _9.0014 0.08880 0.8909 -0.6101 1
X, 5 R X, % R
@ +- 0.56 2.9949( 0.0599 1 0,7301] 0.9011 2.9983 0.0595 1 -0,7089 0.8936
§ 14,9988| 0.0124| 0.7301 1 0.6267 15.0004 0.0124 -0.7089 1 -0.5924
E 8.9957| 0.0888] 0.9011] 0.6267 1 8,9959 0.0855 0.8936 -0.5924 1
§ X, ik R X, £ R
t% +-1.00 2,9969| 0,0629 1 0.6912} 0.8077 2,9980 0.0582 1 -0.6907 0.8966
14.9991] 0.0124| 0.6912 1 0.6117 14.9995 0.0122 -0.6907 1 -0.5846
8.2936 0.0918] 0.8077] 0.6117 1 _8.9943 0,0877 0.8966 -0.56846 1
X, 53 R X, S R
+- 150 3,0008| 0.0631 1 0.7457| 0.9087 2,9972 0.0592 1 -0.6777 0.9011
15,0008| 0.0129] 0.7457 1 0.6294 15.0002 0.0117 -0.6777 1 -0.5700
8.9987| 0.0967f 0.9087) 0.6294 1 8.9947 0.0887 0.9011 -0,5700 1

14
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Table I1.7: Input Process Parameters and Simulated Process Parameters for Run 60 & 61

Run: 60 Run: 61
All Positive Correlation Coefficients Two Negative and One Positive Correlation Coefficients
2 1 c p p o p
‘g. BE'S S‘tlift SiZt? for 3 0.06 1 0.2 0.1 3 0.06 1 -0.2 0.1
£ g | Simulation | 45 | 012 | 02 1 0.15 15 0.12 -0.2 1 -0.15
. 9 | o009 | 01 | 015 | 1 9 0.09 0.1 -0.15 1
X, 55 R X, 55 R
+- 0256 |2:9981] 0.0608| 1 0.1849] 0.1229 2.9941 0.0616 1 -0.1877 0.0185
14,9998 0.0119| 0.1849 1 0.1382 15.0004 0.0118 -0,1877 1 -0,1226
8.2958 0.0917] 0.1229( 0.1382 1 _9.0010 0.09016 0.0185 -0.1226 1
X, 5 R X, 5 R
P +- 056 3.0005| 0.0616 1 0.2197]| 0.0933 3.0003 0.0564 1 -0.2542 0.1536
§ 14,9996 0.0118| 0.2197 1 0.2266 15.0000 0.0123 -0.2542 1 -0.1502
E 8.2993 0.0902| 0.0933| 0.2266 1 _9.0053 0.0944 0.1536 -0,1502 1
3 £ % R X, 5 R
-;E: +-1.00 3.0000| 0.0586 1 0.1667} 0.0560 3.0012 0.0611 1 -0.1580 0.0712
14.9996| 0.0120] 0.1667 1 0.1575 14,9998 0.0119 -0,15680 1 -0.1421
8.2956 0.0892| 0.0560f 0.1575 1 _9.0063 0.0874 0.0712 -0.1421 1
X, 5 R X, % R
+-1.50 2,9983] 0.0560 1 0.1210] 0.0911 3.0039 0.0577 1 -0.1042 0.0800
15.0002( 0.0112{ 0.1210 1 0.1633 14,9993 0.0120 -0.1042 1 -0.1368
9.0067| 0.0893| 0.0911| 0.1633 1 9,0058 0.0914 0.0800 -0.1368 1

91
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Table I1.8: Input Process Parameters and Simulated Process Parameters for Run 70 & 71

Run: 70 Run; 71
All Positive Correlation Coefficients Two Negative and One Positive Correlation Coefficients
2 p o P p o P
‘g‘_EES Sh?ft Size'e forl 0.5 1.6 1 0.7 0.9 0.5 1.6 1 -0.7 0.9
€ g | Simulation | 065 | 12 | 07 1 0.6 0.65 1.2 0.7 1 0.6
. 025 | 09 | 09 | 06 | 1 0.25 0.9 0.9 06 1
X, 5 R X, 5 R
+/- 0.25¢ 0.4112] 1.5148 1 0.6714| 0.8847 0.5659 1,6321 1 -0.6965 0.9004
0.5881 1.2070| 0.6714 1 0.5743 0.6976 1.2123 -0.6965 1 -0.6191
0.3009 0.8677| 0.8847| 0.5743 1 _0.2801 0.92480 0.9004 -0.6191 1
X, 5 R X, 5 R
@ +- 0.50 0.4446| 1.6321 1 0.7354| 0.9008 0.4933 1.6004 1 -0.7202 0.8991
§ 0.6843| 1.2123] 0.7354 1 0.6466 0.6533 1.1924 -0.7202 1 -0.6112
E 02379 0.9248| 0.9008 0.6466( 1 _0.2486 0.9146 0.8991 -0.6112 1
}:_E X, 5 R X, 5 R
% +-1.06 0.5135] 1.6255 1 0.7306] 0.9086 0.5559 1.65625 1 -0.6787 0.8911
0.6199} 1.2279] 0.7306 1 0.6302 0.6811 1.1734 -0.6787 1 -0.5843
0.2562] 0.9180| 0.9086{ 0.6302| 1 _0.2752 0.8704 0.8911 -0.5843 1
X, H R X, 5 R
+-1.56 0.5413] 1.5768] 1 0.7113] 0.9023 0.5413 1.5768 1 -0.6658 0.9055
0.6528] 1.2370] 0.7113 1 0.5912 0.6094 1.1652 -0.6658 1 -0.6935
0.2741] 0.9070] 0.9023] 0.5912 1 0.2724 0.9089 0.9055 -0.56935 1

1
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Table I1.9: Input Process Parameters and Simulated Process Parameters for Run 80 & 81

Run: 80

Run; 81

All Positive Correlation Coefficients

Two Negative and One Positive Correlation Coefficients

o i o p p c p

5 ‘aES Shift Size for] 0.5 1.6 1 0.2 0.1 0.5 16 1 0.2 0.1

Eg Simulation ¢ g5 1.2 0.2 1 0.15 0.65 1.2 -0.2 1 -0.15

(o
0.25 0.9 0.1 0.15 1 0.25 0.9 0.1 -0.15 1
A_,, s; R ./\7[ s; R

+- 0250 |.0.5842 15983 1 0.1483| 0.2163 0.5601 1.6163 1 -0.2022 0.1531

0.7021] 1.1586| 0.1483| 1 0.1932 0.6024 1,2223|  -0.2022 1 -0.2178
0.2217| 0.9033| 0.2163] 0.1932| 1 0.2526| 0.86516 0.1531| -0.2178 1
X, 5 R X, 5 R

2 4050 | 04908 16163 1 0.1961| 0.0855 0.3076 1.5583 1 -0.1413 0.1062

§ 0.6148| 1.2223| 0.1961| 1 0.1264 0.6348 11519  -0.1413 1 -0.1665

D:S 0.2673| 0.8652| 0.0855| 0.1264] 1 _0.2764 0.9137 0.1062|  -0.1665 1

® X % R X, % R

-3

b% +-10c | _0.5935] 15688] 1 0.1971| 0.2063 0.4109 1.6096 1 -0.2020 0.0690
0.6890| 1.1922| 0.1971] 1 0.2346 0.7073 1.2373|  -0.2020 1 -0.0882
0.2405| 0.9353) 0.2063] 0.2346] 1 _0.2486 0.8795 0.0690|  -0.0882 1
X, 55 R X, 5 R

+-15c | _04159] 1.6040| 1 0.2075| 0.1116 0.5033 1.6301 1 -0.1609 0,1140

0.5821] 1.1958] 02075 1 0.1976 0.7009 1.2480{  -0.1609 1 -0.1072
0.2993| 0.8814| 0.1116| 0.19768] 1 0.2749 0.9403 0.1140[  -0.1072 1

34
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Table I1.10: Input Process Parameters and Simulated Process Parameters for Run 90 & 91

Run: 90

Run: 91

All Positive Correlation Coefficients

Two Negative and One Positive Correlation Coefficients

c

2 u p p c p
58 |shiftSizefor| 05 | 0.6 1 07 | 09 0.5 0.06 1 -0.7 0.9
£ g | Simulation | 065 | 042 | 07 1 06 0.65 0.12 -0.7 1 0.6
o 025 | 009 | 09 06 1 025 0.09 0.9 0.6 1
X, L R X, 5 R
o025 | _0:5030| 00594 1 06734| 0.9036]  0.498s] o.0802] 1 0.6664]  0.8881
0.6508| 0.0119 0.6738] 1 | 0.5885] 06496| 00123] 06664 1 -0.5616
0.2553| 0.0896| 0.9036| 0.5885) 1 _02478|  009036| 08881 -0.5616) 1
X % R X, % R
o | +-05s |05049] 00602 1 0.7321] 0.9006| 05025  0.0569] 1 -0.7119]  0.8894
2 0.6506] 0.0123] 07321 1 | 0e321] 06498 0.0120] -07119] 1 -0.5975
‘g 0.2580| 0.0904| 0.006] 06321 1 02558 00858  08894) -0.5075) 1
8 ol L R X 5 R
£ | 4100 | 04997 00597| 1 0.7127) 0.9013]  0.4955|  0.0595| 1 -0.6915]  0.8968
06501] 0.0123] 071270 1 | 06445] 06505 0.0124] -06915] 1 -0,5958
0.2494] 0.0915| 09013] 06445 1 _02434| 00871 08968 -0.5958) 1
X, 5 R X % R
155 | _0.5015| 0.0629] 1 0.7126] 0.9066|  0.4943] 00620 1 -0.7138]  0.8965
0.6503| 0.0117| 0.7126] 1 | 0e3s1] o06511] 0.0121] -07138] 1 -0,6230
0.2490] 0.0953] 0.9066| 0.6351] 1 0.2440|  0.0909]  0.8965] -0.6230] 1

6¥1
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Table I1.11: Input Process Parameters and Simulated Process Parameters for Run 100 & 101

Run: 100 Run: 101
All Positive Correlation Coefficients Two Negative and One Positive Correlation Coefficients
o B o p p o p
3 Tg‘ Shfft Sizg forl 0.5 0.06 1 0.2 0.1 0.5 0.06 1 -0.2 0.1
£ g | Simulation | 065 | 012 | 02 1 015 | 065 0.12 -0.2 1 -0.15
o 0._2_5 0.09 0.1 0.15 1 9_.25 0.09 0.1 -0.16 1
X % R X % R
+/-0.25¢ 0.4991) 0.0586 1 0.2114] 0.0582 0.4987 0.0587 1 -0.0959 0.0945
0.6497] 0.0115] 0.2114 1 0.1632 0.6492 0.0122 -0.0959 1 -0,1385
0.2488 0.0905| 0.0582| 0.1532 1 _0.2509 0.09303 0.0945 -0,1385 1
X, 5 R X, o R
@ +-056 0.4980] 0.0587 1 0.1610] 0.1021 0.4987 0.0605 1 -0.2106 0.1598
§ 0.6501] 0.0122} 0.1610 1 0.2036 0.6501 0.0119 -0.2106 1 -0.1291
g 0.__2569 0.0930| 0.1021| 0.2036 1 =0.2521 0.0879 0.1598 -0.1291 1
5 X % R X % R
-(% +-1.00 0.4980] 0.0641 1 0.2190{ 0.0895 0.5024 0.0631 1 -0,1693 0.0956
0.6503] 0.0123] 0.2190 1 0.1804 0.6492 0.0127 -0,1693 1 -0.1383
0.3553 0.0830] 0.0895] 0.1804 1 _0.251 8 0.0916 0.0956 -0.1383 1
X, o R X, 5 R
+-1.56 05007 0.0588 1 0.1644( 0.1606 0.4997 0.0583 1 -0.1515 0.1149
0.6502] 0.0119| 0.1644 1 0.2077 0.6493 0.0122 -0,1515 1 -0.2021
0.2524| 0.0890{ 0.1606| 0.2077 1 0.2480 0.0876 0.1149 -0.2021 1

0¢1
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Appendix ITII.  Sample Major Element Control Limits Information
and Sample Major Element Control Charts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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. . . . . -
Table III.1: Sample Major Element Control Limits Information for 22 Simulation Runs
Simulation |  Shift All Positive Correlation Coefficlents Simulation |  Shift Two Negative and One Posttive Correlation Coefficients
Run Size UCL,, LTl UCL,; [Cha UClw [Tl Run Size UCLy [Koj ULl Tl UCla TChx
+-0.25¢ 6.6649]  -6.6649 1.7158]  -1.7158 53010 -5.3010] +/-0.250 65871 -6.5871 2.0456]  -2.0456 48288]  -4.8288
oo |*-05s 54349] 54349 1,7856]  -1.7856 42131] 42131 . [#-050 6,3076] __-6.3076 1.6868]  -1.6868 50598] _ -5.0598
+-1.00 6.2777| _ 6.2177 1.7745] ___-1.7745 51398] _ -5.1398 +- 1,00 63465 -6.3465 1.7318] -1.7318 4.9743] 49743
+- 1,50 5.5507|__ -5.5597 1.7842]  -1.7842 4.4459]  4.4459 +-15a 53137 -5.3137 1.7699]__ -1.7699 42825] 42825
+/- 0250 0.9374]  -0.9374 0.9258] _ -0.9258 0.9196] __ -0.9196| +1-0.25g 0.9123] _ -0.9123 0.9382] _ -0.9382 0.5077 o.sﬁ|
w0 [=05s 0.9586] _ -0.9586 0.9754] _ -0.9754 08%e4| 08984 .  [+-050 0.9135] _ -09135 0.9200] _ -0.9200 0.5209] -0.9208)
+-1.00 09223]  -0.9223 0.9749] _ -0.9749 0.9339] 09339 +-1.0a 0.9224] -0.9224 0.9446] 05446 0.9475| _ -0.9475|
+/-1.50 0.9351] 09351 09332]  -0.9332 0.8974] -0.8914]) +-1.50 09443 09443 0.94%4] 09454 0.9361] -0.9361)
+1-0.250 26406]  -2.6406 1.0159] -1.0159 2.7050]  -2.7050] +/-0.25g 21670]  -2.1670 0.9859]  -0,9859 2.2718 -2.271g"
20 [H-05q 24524] 24524 1.0919] -1.0919 26187 -2.6187_" 21 [¥05s 2.2524] -2.2524 1.0140]  -1.0140 2.4165
+-1.00 2.5097]  -2.5097 1.0331]  -1.0331 2.6097]  -2.6097 +/-1.0a 24464  -2.4484 0.9973] -0.9973 25411 )
+-1.50 25392 25392 1.0037]  -1.0037 26670  -2.6670 +-15a 26130]  -26130 1.0860{  -1.0860 27714
+1-0.250 15.0063] -150063]  33.1915] -33.1915] _ 11.3681] -11.3681 +1-0.25g 14.5044]  -14.5044]  33.8263] -33.8263] 11,0952
ap [|¥-05a 158060] -15.9060| 382234 -38.2234] 112127 -11.2127) ,, [+-050 13.4393| -134393]  30.8108] -30.8108] _ 10.3667
+-1.00 139101] -139101] 338737 -33.8737]  11.5187] -11.5187 +-1.0a 153152 -153152]  36.6023] -36.6023] _ 12.5755
+- 150 14.6108] -14.6108] 32.7892] -32.7892]  10.8746 -wauéL - 150 16.2398] -16.2398]  34.9396] -34.9396] _ 11.6585
+/-0.25a 11.8185] -11.8185 9.4224]  -9.4224 50905]  -5.0905] +/-0.250 10.9922]  -10.8922 8.6223] -8.6223 4.5492
40 |[05s 123784] -12.3784 9.8202]  -9.8202 44801] 44801 . [+#-050 11.0933]  -11.0933 8.9440]  -8.8440 4.8844
+/-1.00 11.8625]  -11.8625 9.0880] _ -9.0880 50564]  -5.0564 +-1.00 103773]_-10.3773 8.8367|  -8.8367 4.1903
+- 1,50 11.9939] -11.9939]  10.1547] -10.1547 4.6988 -45988}' +-1.50 11.0153] 11,0153 94918]  -9.4918 4.7091
+-0.250 55799] _ -5.5799 18127 -1.8127 4.3216 -4.3215“ +/-0.25¢ 5.3061]  -5.3061 1.7432]  -1.7432 4.2859
s0  [*-050 6.1649] _ -6.1649 1.9096] -1.90% 474%6] 474160 , [¥-050 58065  -5.8065 1.8032]  -1.8032 4.4505
+-1.00 6.0153] _ -6.0153 1.6934]  -1.6934 50199]  -5.0199] +-1.0a 57316 -5.7316 1.7068]  -1.7068 4,5530
+- 150 70966  -7.0%66 20482 20482 5.2173 -5.2173:“ +1-1.50 58521 -5.8521 1.6580)  -1.6580 4.7878
+/-0.250 0.8224] -0.9224 0.9262]  -0.9262 0,9082]  -0.9082] +/-0.250 0.9142] -0.9142 0.9278] _ -0.9278 0.8855
6o [H-05¢ 0.9287 -0.9287 0.9704 -0.9704 0.9317 -0.9317]| 61 +/- 0.5¢ 0.8569 -0,9569 0.8558 -0.9558 0.9157
+/-1.00 0.9080]  -0.9080 09282  -0.9282 0.9053]  -0.9053] +-1.00 0.9068] — -0.9068 0.9208]  -0.9208 0.9024
+/-1.50 0.8539]  -0.8999 0.9168] -0.9168 0.8110] -0.9110|| +-1.50 0.8557] -0.8957 0,9069]  -0.9069 0.9028
+/-0.250 49712 49712 1611 -1.6111 40737]___-4.0737) +/-0.250 55869]  -5.5869 1.7138]__ -1.7139 4.6647
0 [¥-05¢ 59488 -5.9488 1.9267] _ -1.9267 46932 -4.6932_" 71 |#-05c 6.0783]  -8.0783 1.8593] -1.8593 4.6696
+-1.00 6.6296]  -6.6296 1.9187] _ -1.9187 51267]  -5.1267 +-1.0a 52472 -5.2472 16413 -1.6413 4.2975
+-1.50 64293] 64293 1.8367] -1.8367 4.8829] -4.8829) +- 150 5.7045] -5.7045 15858  -1.5856 4.9031
+-0.250 09369 -0.9369 0.9277]  -0.9277 0.9518]  -0.9518] +1-0.25g 09317  -0.9317 08552]  -0.9552 0.9381
g0 |-05s 09209 -0.9209 09280 -0.9290 089%8| 08998 ,, [+-050 0.9065| _ -0.9065 0.9218] _ -0.9218 0.9137
+-1.0a 0.9443] 09443 0.9567|  -0.9567 0.9604| _ -0.9604|| +-1.00 0.9220]  -0.9220 0.9248| 09248 0.8914
+-1.50 0.5267)  -0.9267 0.8523]  -0.8523 0.9228] -0.9228)| +- 150 0.9143] 09143 09128 -0.9128 0.9010 ;
+-0.250 5.7676] _ -5.7676 1.6200] _ -1.6200 4.8231]  -4.8231) +1-0.25g 51799] 51799 1.5989]  -1.5989 4.2065] .2065]
90 [¥-050 6.0935| _ -6.0935 1.9168]  -1.9168 4.7092 4.@“ 91 [|#-05a 55693] _ -5.5693 1.8105]  -1.8105 4.2720 !
+-1.00 55864]  -5.5864 1.7927]_ -1.7927 4.7015] _ 4.7015 +-1.0a 56008 -5.6008 1.7000] _ -1,7000 4.5312
+-1.50 6.0097]  6.0097 1.7945]  -1.7945 49576 4.9576| +/-1.5a 56242]  -5.6242 1.8034]  -1.8034 4,5087
+1-0.25q 0.9239]  -0.9239 0.9429]  -0.9429 0.5038] _-0.9038)f +1-0.250 0.8962] _ -0.8962 0.8056] __ -0.9056 0.9054
w00 [H-05e 09101 -0.9101 0.9396]  -0.93%6 09245] 09245} . [+-050 0.8405]  -0.9405 0.9320] -0.9320 0.9140] _ -0.9140]
+- 1,00 09288]  -0.9289 0.9525| -0.8525 09141]  -0.9141 +-1.00 0.9130]  -0.8130 0.9223] 09223 0.9041]  -0.9041
+-1.50 0.9223] 0,923 0.93%0]  -0.93%0 0,9379 -0.937‘9“ +/-1.50 0.5096]  -0.9096 0.9358] -0.9358 0.9265 -o.azg"

[4]!
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Chart I11:00.2: py; = 0.7; py3=0.9; py3=0.6 (+/- 0.50)
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Appendix IV.  Analysis of Simulation Experiment for the Study of
the Effects of Sample Size and Number of Samples
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Table IV. 1: Bias,,% Information for Run 110

198

Rep =25 My Mzz M33
n k Mean [Std. Dev] Range | Mean [Std. Dev] Range || Mean |Std. Dev| Range
6 251 5.38% | 2.81% | 11.62% | 4.92% | 1.90% | 6.38% || 5.31% | 3.26% | 13.52%
6 35| 3.34% | 2.74% [ 11.65%|| 4.49% | 1.52% | 593% || 2.44% | 1.19% | 4.87%
6 50 1.88% | 1.07% | 3.47% || 2.25% | 1.49% | 6.02% || 1.71% | 227% | 9.12%
6 751 1.49% | 1.60% | 7.47% || 2.02% | 0.95% | 4.58% |} 2.26% | 1.87% | 9.78%
6 100[| 1.19% | 0.62% | 2.31% || 1.51% | 1.28% | 6.76% }{ 2.02% | 1.01% | 3.56%
6 2501 1.13% | 0.86% | 2.91% J{ 1.20% | 0.68% | 2.59% || 1.06% | 0.68% | 3.24%
6 5001 1.12% | 1.37% | 5.63% |{ 0.81% | 0.40% | 1.60% || 1.20% | 1.24% | 5.23%
6 750 0.70% | 0.82% | 3.05% || 0.36% | 0.37% | 1.51% || 1.01% [ 0.42% | 1.65%
6 1000jf 0.55% | 0.39% | 1.79% || 0.66% | 0.53% | 1.90% || 0.93% | 0.95% | 3.72%
8 25| 265% | 2.30% | 9.98% || 2.69% | 2.66% | 9.89% || 2.74% | 2.40% | 10.63%
8 35| 2.52% | 1.64% | 5.97% || 1.39% | 1.03% | 4.70% || 3.08% | 3.54% | 18.74%
8 50 2.02% | 2.41% | 12.19% || 1.51% | 1.65% | 6.73% || 2.22% | 1.62% | 8.24%
8 75|l 1.45% | 0.87% | 2.73% || 1.27% | 0.88% | 4.44% || 1.57% | 1.18% | 5.72%
8 100]] 1.35% | 0.90% | 4.84% || 1.35% | 1.13% | 3.82% || 1.80% | 0.24% | 5.33%
8 2501 1.20% | 1.12% | 3.81% |[ 1.08% | 1.38% | 5.28% || 1.01% [ 1.17% | 3.83%
8 500l 0.97% | 0.66% | 3.11% || 0.52% | 0.56% | 1.92% || 1.05% | 0.93% | 3.20%
8 7501 0.77% | 1.16% | 4.43% || 0.47% | 0.35% | 1.82% || 0.84% | 1.06% | 4.39%
8 1000|| 0.59% | 0.60% | 1.88% || 0.23% | 0.23% | 1.03% || 0.48% | 0.47% | 2.44%
10 25| 2.71% | 3.78% | 13.58% || 2.71% | 3.12% | 13.52% | 3.15% | 2.06% | 11.03%
10 35 1.71% | 1.03% | 4.61% || 2.76% | 1.09% | 561% || 2.68% | 1.92% | 7.85%
10 501 1.58% | 1.08% | 5.65% || 1.47% | 1.02% | 5.16% || 2.02% | 2.36% | 12.02%
10 75| 1.47% | 0.96% | 4.31% || 1.53% | 1.66% | 5.38% |f 1.72% | 0.73% | 2.57%
10 100 1.30% | 1.45% | 7.06% || 1.31% | 1.28% | 5.88% || 1.31% | 0.91% | 4.00%
10 250]] 1.35% | 2.59% | 13.24% | 1.29% | 0.97% | 4.83% || 0.93% | 0.96% | 3.86%
10 500 0.44% | 0.37% | 1.19% || 0.86% | 0.54% | 2.27% f| 1.11% | 0.79% | 3.22%
10 750[| 0.65% | 0.81% | 3.11% || 0.47% | 0.62% | 2.98% || 0.58% | 0.68% | 2.37%
10 1000f} 0.27% | 0.35% | 1.77% || 0.21% | 0.21% | 0.83% || 0.34% | 0.28% | 1.12%
15 25| 2.38% | 2.22% | 9.40% || 2.42% | 2.27% | 9.24% || 2.12% | 1.79% | 6.58%
15 35| 2.50% | 1.54% | 6.40% || 1.56% | 2.10% | 7.93% || 1.70% | 1.33% | 5.10%
15 50i| 1.32% | 0.86% | 3.54% || 1.21% | 0.88% | 4.38% || 1.31% | 1.29% | 6.14%
15 751 0.86% | 0.69% | 2.49% || 1.10% | 0.41% | 1.77% || 1.19% | 0.50% | 1.94%
15 100} 0.79% | 0.48% | 2.08% [| 0.55% | 0.64% | 3.22% || 1.03% | 0.78% | 3.45%
15 250|f 0.49% | 0.34% | 1.25% |f 0.38% | 0.37% | 1.47% || 0.79% [ 0.76% | 2.83%
15 500|| 0.60% | 1.00% | 3.86% {f 0.40% | 0.36% | 1.64% || 0.54% | 0.81% | 2.78%
15 750j| 0.33% | 0.59% | 2.88% || 0.34% | 0.24% | 0.75% || 0.45% | 0.80% | 3.96%
15 1000} 0.33% | 0.41% | 2.16% || 0.41% | 0.56% | 2.38% || 0.55% | 0.84% | 3.88%

w=30=16u=150,=12;43=9,63=0.9; p;2=0.7,p,3=0.9, p23 =0.6
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Table IV. 2: Bias,,% Information for Run 120

Rep=25 M11 Mzz M33
n k Mean [Std. Dev| Range || Mean [Std. Dev| Range || Mean [Std. Dev.] Range
6 25| 1.34% | 0.80% | 3.92% || 2.95% | 1.24% | 4.82% || 1.57% | 1.35% | 5.07%
6 35/l 1.45% | 0.89% | 4.88% || 1.00% | 0.92% | 4.77% || 0.89% | 0.67% | 2.28%
6 50|l 0.77% | 060% | 2.11% | 0.94% | 0.71% | 2.03% || 0.43% | 0.40% | 1.66%
6 75| 0.36% | 0.18% | 0.69% || 0.53% | 0.38% | 1.35% || 1.01% | 0.23% | 0.96%
6 100|f 0.34% | 0.24% | 0.89% [l 0.19% [ 0.16% | 0.62% | 0.24% | 0.27% | 1.21%
6 250| 0.38% | 0.18% | 0.73% | 0.32% | 0.20% | 0.66% || 0.34% | 0.28% | 1.26%
6 500}l 0.15% | 0.14% | 0.47% || 0.32% | 0.23% | 1.01% [| 0.26% | 0.20% | 0.74%
6 750[| 0.24% | 0.37% | 1.88% }t 0.37% | 0.21% | 0.81% jt 0.10% | 0.11% | 0.48%
6 1000]| 0.08% | 0.11% | 0.44% || 0.14% | 0.08% | 0.34% || 0.06% | 0.04% | 0.17%
8 25[[ 1.19% | 0.76% | 3.87% || 1.37% | 1.69% | 7.97% || 1.12% | 0.70% | 2.22%
8 35|l 1.09% | 1.32% | 4.56% || 1.18% | 1.62% | 5.26% || 0.45% | 0.20% | 0.76%
8 50| 0.59% | 0.43% | 1.42% || 1.21% | 0.76% | 2.73% || 0.34% | 0.41% | 1.73%
8 75| 0.44% | 0.50% | 2.60% || 0.49% | 0.39% | 1.87% || 0.64% | 0.39% | 1.83%
8 100){ 0.25% | 0.34% | 1.35% |f 0.21% | 0.23% | 0.92% |l 0.20% | 0.22% | 0.89%
8 250|| 0.22% | 0.14% | 0.48% | 0.26% | 0.23% | 0.82% |f 0.42% | 0.20% | 0.96%
8 500 0.22% | 0.35% | 1.29% || 0.14% | 0.17% | 0.63% || 0.24% | 0.18% | 0.76%
8 750}l 0.11% | 0.06% | 0.27% |} 0.12% | 0.20% | 0.91% |{ 0.24% | 0.27% | 1.15%
8 1000]] 0.08% | 0.07% | 0.31% || 0.08% | 0.07% | 0.33% | 0.04% | 0.03% | 0.10%
10 25| 054% | 0.47% | 1.66% || 1.06% | 0.54% | 2.15% || 1.97% | 0.77% | 2.84%
10 35| 0.30% | 0.54% | 2.02% j| 0.77% | 0.42% | 2.31% || 0.51% | 0.34% | 1.57%
10 50|l 0.36% | 0.40% [ 1.70% || 0.44% | 0.48% | 1.96% || 0.35% | 0.42% | 2.12%
10 75| 0.42% | 0.35% | 1.81% || 0.33% | 0.44% | 1.87% || 0.35% | 0.45% | 1.40%

10 100} 0.39% | 0.26% | 1.04% || 0.24% | 0.13% | 0.51% }| 0.10% | 0.09% | 0.28%
10 250|| 0.45% | 0.43% | 1.39% || 0.28% | 0.32% | 1.13% || 0.22% | 0.11% | 0.52%
10 500|| 0.27% | 0.14% | 0.63% | 0.20% | 0.12% | 0.56% || 0.28% | 0.27% [ 1.34%
10 750] 0.12% | 0.13% | 0.51% || 0.20% | 0.10% | 0.45% || 0.07% | 0.05% | 0.25%
10 1000|f 0.08% | 0.16% | 0.67% | 0.17% | 0.11% | 0.34% || 0.12% | 0.06% | 0.25%

15 25| 0.85% | 0.20% | 0.99% || 0.36% | 0.31% | 1.15% || 0.34% | 0.37% | 1.66%
15 351 0.37% | 0.31% | 1.37% || 0.93% | 0.50% | 1.65% || 0.31% | 0.15% | 0.52%
15 50|| 0.38% | 0.33% | 1.74% {| 0.43% | 0.41% | 1.48% || 0.39% | 0.50% | 1.61%
15 75 0.52% | 0.20% | 0.91% || 0.32% | 0.22% | 0.76% || 0.20% | 0.14% | 0.63%

15 100[| 0.17% | 0.18% | 0.61% || 0.30% [ 0.20% | 0.72% || 0.22% | 0.23% | 1.09%
15 250[| 0.14% | 0.13% | 0.51% || 0.21% | 0.16% | 0.68% || 0.14% | 0.15% [ 0.60%
15 500| 0.10% | 0.08% | 0.23% || 0.20% | 0.10% | 0.52% }i 0.17% | 0.10% | 0.45%
15 750[| 0.12% | 0.17% | 0.73% || 0.09% | 0.06% | 0.28% |{ 0.08% | 0.06% | 0.28%
15 1000)| 0.06% | 0.05% | 0.20% || 0.10% | 0.10% | 0.45% | 0.06% | 0.11% [ 0.51%

Hi=3,01=16;,=15,0,=1.2; u3=9,063=0.9; p;2=0.2, p13=0.1, p»3 =0.15
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Table IV. 3: Bias,,% Information for Run 130

Rep =25 M11 M22 Mgg
n k Mean |Std. E)gv. Range || Mean |Std. Dev.| Range || Mean |Std. Dev| Range
6 25|l 455% | 3.07% | 12.77% || 3.97% | 1.54% | 5.75% || 4.91% | 3.02% | 12.28%
6 35l 1.66% | 2.56% | 10.08% || 1.54% | 1.04% | 3.09% || 2.66% | 1.15% | 5.01%
6 50l 1.16% | 1.27% | 5.37% || 1.55% | 1.12% | 5.82% || 1.86% | 0.88% | 2.96%
6 75 1.47% | 1.11% | 3.95% |l 0.84% | 0.61% | 2.09% || 1.64% | 1.86% | 6.75%
6 100} 1.83% | 0.92% | 3.09% || 0.23% | 0.27% | 0.97% || 1.72% | 1.38% | 5.47%
6 250}f 1.05% | 0.60% | 2.47% || 0.57% | 0.32% | 1.20% [ 1.13% | 0.63% | 2.47%
6 500)f 1.05% [ 1.23% | 5.00% J| 0.21% | 0.11% | 0.37% || 1.11% | 1.11% | 4.54%
6 750|| 0.82% | 0.70% | 2.85% || 0.46% | 0.29% | 0.96% [| 0.89% [ 0.88% | 3.40%
6 1000|| 0.78% | 0.46% | 2.10% || 0.45% | 0.32% | 1.43% || 0.79% | 0.33% | 1.51%
8 25l 2.33% | 1.73% | 7.52% || 1.75% | 2.20% | 10.14% | 2.91% | 3.17% | 16.56%
8 35|} 2.50% | 2.70% | 14.11%|] 1.65% | 2.15% | 6.96% || 1.96% | 0.96% | 5.53%
8 50| 1.78% | 0.95% | 5.10% || 1.69% | 1.04% | 3.79% || 2.15% | 1.73% | 7.94%
8 75| 1.54% | 1.79% | 8.11% || 0.68% | 0.48% | 2.07% || 1.46% | 1.00% | 4.59%
8 100|| 1.41% | 0.83% | 2.81% || 0.26% | 0.33% | 1.31% || 1.16% | 1.27% | 5.43%
8 250|f 0.99% | 0.99% | 3.25% || 0.38% | 0.34% | 1.24% || 0.64% | 0.74% | 2.70%
8 500)f 0.56% | 0.36% | 1.40% |{ 0.19% | 0.31% | 1.38% |l 0.38% | 0.38% | 1.84%
8 750|| 0.71% | 1.04% | 4.03% || 0.21% | 0.30% | 1.13% || 0.73% | 0.93% | 3.76%
8 1000|| 0.81% | 0.78% | 2.53% || 0.12% | 0.09% | 0.39% || 1.03% |.0.98% | 3.49%
10 25 2.75% | 1.70% | 861% || 1.64% | 0.93% | 3.88% || 3.74% | 1.62% | 6.74%
10 35| 2.42% | 2.02% | 8.15% || 1.07% | 0.58% | 3.04% || 2.28% | 1.97% | 8.01%
10 50] 2.00% | 1.82% | 9.13% || 0.70% | 0.85% | 3.44% || 1.56% | 1.91% | 9.36%
10 75| 1.38% | 0.74% | 3.07% || 0.51% | 0.64% | 2.60% || 1.43% | 0.92% | 4.15%

10 100|| 1.43% | 0.61% | 2.90% | 0.36% | 0.20% | 0.82% || 0.90% | 0.93% | 3.54%
10 250} 1.07% | 1.16% | 5.20% || 0.44% | 0.52% | 1.81% || 1.55% | 0.65% | 2.22%
10 500jf 0.69% | 0.61% | 2.15% || 0.29% | 0.17% | 0.74% || 0.97% | 0.83% | 3.52%
10 750|l 0.58% | 0.68% | 2.46% |{ 0.30% | 0.17% | 0.69% [l 0.51% | 0.70% | 2.32%
10 1000|| 0.26% | 0.28% | 1.47% || 0.24% | 0.15% | 0.48% || 0.34% | 0.28% | 1.15%

15 25| 2.04% | 1.64% | 5.90% || 1.37% | 0.80% | 2.64% || 1.50% | 1.13% [ 4.49%
15 35| 1.27% | 0.92% | 4.68% || 0.53% | 0.43% | 1.61% |[ 1.57% | 1.46% | 5.15%
15 50} 1.58% | 1.58% | 6.82% || 0.66% | 0.61% | 2.28% | 1.47% | 1.36% | 6.37%
15 75| 0.69% | 0.50% | 2.18% || 0.45% | 0.32% | 1.09% Jj 0.93% | 0.58% | 2.33%

15 100)] 0.92% | 0.56% | 2.64% || 0.41% | 0.29% | 1.04% || 0.85% | 0.72% | 3.06%
15 250]| 0.67% | 0.62% | 2.40% || 0.27% | 0.22% | 0.91% || 0.67% | 0.68% | 2.59%
15 500|| 0.54% | 0.83% | 2.92% | 0.31% | 0.15% | 0.76% || 0.51% | 0.79% | 2.59%
15 750)l 0.39% | 0.74% | 3.56% | 0.12% | 0.08% | 0.39% || 0.42% | 0.82% | 3.97%
15 1000|f 0.38% | 0.58% | 2.90% || 0.16% | 0.14% | 0.65% | 0.51% | 0.75% | 3.59%

Ly =3, Cr = 1.6; Hy = 15, Gy = 1.2; H3 =9, T3 =0.9; P12 =0‘3, P13 =0.8, P =0.35
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Rep =25 My, Moo Mas
n k Mean |Std. Dev] Range || Mean [Std. Dev.| Range || Mean |Std. Dev.} Range
6 25| 7.65% | 2.24% | 8.91% |{ 4.85% | 2.59% | 13.63%{ 2.20% | 3.58% [ 16.44%
6 35| 3.93% | 2.37% | 10.13% | 6.59% | 2.33% | 9.95% || 7.00% | 2.72% | 14.26%
6 50|l 3.08% | 202% | 6.87% || 2.33% | 1.67% | 560% || 2.15% | 1.19% | 5.11%
6 75| 2.54% | 2.71% | 14.00% || 1.75% | 1.27% | 4.39% || 1.42% | 0.85% | 3.57%
6 100}l 1.20% | 1.00% | 4.95% | 1.42% | 0.97% | 3.28% 261% | 1.42% | 6.05%
6 250| 1.21% | 0.67% | 2.56% || 1.56% | 0.95% 363% || 1.52% | 0.87% | 3.85%
6 500if 1.54% | 0.90% | 4.88% || 1.82% | 0.75% | 3.49% 1.16% | 0.78% | 4.15%
6 750][ 129% | 067% | 3.01% || 1.43% | 0.80% | 2.75% || 1.22% | 0.67% | 2.25%
6 1000][ 0.88% | 099% | 3.25% || 0.69% | 0.45% | 1.99% || 0.68% | 0.49% | 1.86%
8 25l 4.31% | 1.86% | 6.58% || 3.10% | 2.91% | 13.56%|| 4.41% | 4.66% | 14.61%
8 35 2.04% | 2.98% | 13.80% || 1.74% | 2.64% | 10.67%| 3.66% | 1.24% | 5.43%
8 501 1.51% | 0.96% | 2.95% || 3.23% | 1.60% | 6.83% || 2.81% | 2.08% | 10.37%
8 75l 1.27% | 1.93% | 10.14% | 1.76% | 1.86% | 9.14% || 1.53% | 2.54% { 9.84%
8 100|| 1.09% | 0.98% | 4.61% || 1.49% | 1.11% | 4.89% |[ 1.62% | 1.07% | 5.46%
8 250)l 1.66% | 0.79% | 3.66% || 2.64% | 1.03% | 4.40% 2.18% | 0.99% | 3.36%
8 500} 0.85% | 0.62% | 3.37% || 0.82% | 0.72% | 2.88% 0.72% | 0.70% | 2.58%
8 750|( 0.82% | 0.97% | 3.84% || 0.70% | 0.70% | 2.52% |l 0.65% | 0.40% 1.31%
8 1000)f 0.61% | 0.33% | 1.22% || 0.57% | 0.47% | 2.06% {| 0.49% | 0.59% | 3.07%
10 25 461% | 2.72% | 11.31%| 3.19% | 3.42% | 16.12%| 3.52% | 2.55% | 10.53%
10 35l 2.94% | 4.05% | 20.32% || 4.07% | 3.68% | 15.76%{ 2.42% | 2.86% | 12.73%
10 50l 2.18% | 162% | 593% || 1.74% | 0.91% | 3.48% || 1.88% | 2.53% | 7.13%
10 75| 1.36% [ 1.85% | 9.03% || 1.41% | 1.13% | 4.24% [ 1.28% | 2.79% | 14.13%
10 100|| 1.69% | 0.91% | 3.00% |i 1.39% | 2.83% | 14.53%| 1.54% | 0.71% 2.14%
10 250f| 0.93% | 0.70% | 2.89% || 0.64% | 0.75% | 3.19% 0.60% | 0.82% | 4.06%
10 500|| 0.69% | 0.52% | 2.66% || 0.80% | 0.44% | 2.13% 0.83% | 0.57% | 3.26%
10 750f 0.59% | 0.64% | 2.09% || 0.65% | 0.68% | 2.33% 0.95% | 0.96% | 4.91%
10 1000l 0.56% | 0.73% | 3.25% || 0.58% | 0.77% | 2.71% || 0.36% | 0.51% | 2.14%
15 25| 2.82% | 1.76% | 5.54% || 2.34% | 1.43% | 4.55% || 2.82% | 1.40% | 4.64%
15 35| 1.58% | 1.55% | 4.83% || 1.74% | 1.70% | 7.80% || 1.27% | 1.71% | 7.73%
15 50|| 1.52% | 0.74% | 3.11% || 1.29% | 1.02% | 3.58% || 1.16% | 1.71% | 8.41%
15 75 1.10% | 1.86% | 8.19% || 1.27% | 1.11% | 4.36% jj 1.61% | 1.45% | 5.80%
15 100|| 1.00% [ 1.05% | 3.16% || 1.13% | 1.24% | 4.23% || 1.56% | 1.11% | 4.33%
15 250} 0.76% | 0.77% | 2.62% )} 0.82% | 1.42% | 5.90% || 1.16% 1.54% | 6.02%
15 500[ 0.62% | 0.68% | 3.06% || 0.64% | 0.71% | 2.74% || 0.71% 1.25% | 5.89%
15 750}l 0.76% | 0.71% | 3.46% )| 0.50% | 0.95% | 4.68% |i 0.52% | 0.65% 2.95%
15 1000} 0.31% | 0.45% | 2.35% || 0.53% | 0.57% | 2.97% [ 0.35% 0.50% | 2.15%

w=30,=16u=150,=12;pu3=9,0;=0.9; p;2=0.85,p;3=04, py=0.38
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Rep =25 My, Mz Mz;

n k Mean |Std. Dev] Range || Mean [Std. Dev.] Range || Mean [Std. Dev] Range
6 25l 7.33% | 2.74% | 14.25% | 9.06% | 2.76% | 12.12% || 5.47% | 3.05% | 12.22%
6 350 4.11% | 4.38% | 16.55% | 3.02% | 1.56% | 5.00% || 2.59% | 1.22% | 4.68%
6 50|l 3.05% | 1.29% | 6.12% || 2.32% | 2.43% | 10.56% | 1.92% | 0.95% | 3.09%
6 75][ 3.89% | 1.65% | 5.99% || 3.12% | 0.90% | 4.39% || 1.68% | 2.03% | 7.87%
6 10@[ 248% | 079% | 2.96% || 2.14% | 2.26% | 6.71% || 1.83% | 1.61% | B.04%
6 250" 1.15% | 0.74% | 2.58% || 1.35% | 0.76% | 2.90% || 1.21% | 0.68% | 2.96%
6 500" 0.52% | 0.66% | 2.38% || 0.59% | 0.57% | 2.55% || 1.23% | 1.20% | 4.97%
6 750" 0.68% | 0.95% | 3.94% || 0.67% | 0.74% | 2.26% || 0.79% | 0.88% | 3.41%
6 1000 0.48% | 0.36% | 1.48% || 0.51% | 0.44% | 1.63% || 0.86% | 0.40% [ 1.80%
8 25 4.53% | 3.62% | 10.80% || 3.52% | 2.76% } 12.00% || 2.96% | 3.40% | 17.68%
8 35| 1.35% | 1.31% | 4.36% || 1.24% | 1.00% | 3.58% || 2.45% | 1.91% | 8.61%
8 50| 1.46% | 1.04% | 3.80% || 2.52% | 2.01% | 6.87% || 1.54% | 1.16% | 5.57%
8 75l 2.31% | 1.19% | 4.88% || 2.48% | 0.70% | 3.07% || 1.69% | 1.27% | 5.34%
8 100| 0.85% | 0.99% | 449% || 0.94% | 1.04% | 3.83% || 1.84% | 0.92% | 5.24%
8 250][ 093% | 059% | 3.18% || 1.15% | 1.28% | 4.43% || 0.82% | 1.02% | 4.19%
8 500][ 1.49% | 1.34% | 551% || 0.97% | 1.10% | 4.28% || 1.04% | 0.98% | 3.42%
8 750" 0.50% | 0.71% | 2.66% J| 0.33% | 0.31% | 1.15% || 0.75% | 0.85% | 3.02%
8 1000|] 0.52% | 0.50% | 2.36% || 0.79% | 1.20% 5.56% || 0.48% | 0.39% | 2.00%

10 25| 2.08% | 2.33% | 11.88%| 2.36% | 2.78% | 9.66% || 3.21% | 2.08% | 11.00%
10 35 3.50% { 2.55% | 11.75%{ 2.90% | 1.84% | 891% || 2.78% | 2.17% | 8.91%
10 501 1.79% | 2.11% | 7.57% || 4.11% | 3.56% | 11.86% || 1.62% | 1.93% | 9.51%
10 751 1.59% | 0.92% | 3.19% || 1.76% | 1.44% | 5.38% || 1.43% | 0.96% | 3.86%
10 100]] 1.78% | 2.02% | 10.48%|| 1.56% | 1.30% | 6.84% || 1.69% | 0.73% | 2.61%
10 250" 137% | 1.78% | 6.43% || 1.37% | 1.43% | 4.81% || 1.01% | 0.83% | 3.41%
10 500“ 060% | 056% | 259% || 0.46% | 0.36% | 1.29% || 0.92% | 0.94% | 3.58%
10 750" 0.47% | 0.97% | 4.30% || 0.67% | 0.83% | 4.18% || 0.55% | 0.75% | 2.55%
10 1000l 0.37% | 0.27% | 0.92% || 0.30% | 0.37% | 1.38% || 0.37% | 0.30% | 1.12%
15 25l 3.58% | 2.10% | 9.38% || 2.52% | 1.17% | 4.32% || 1.72% | 1.28% | 4.82%
15 35| 1.87% | 1.83% | 9.04% || 2.37% | 3.03% | 11.82%| 1.84% | 1.53% | 5.50%
15 50l 1.27% | 0.86% | 286% || 1.83% | 1.70% | 6.04% || 1.43% | 1.35% | 6.42%
15 75/ 0.67% | 0.68% | 3.56% [} 0.78% | 1.00% | 5.05% || 1.04% | 0.56% | 2.03%
15 100]] 0.88% | 0.41% | 168% || 0.94% | 0.74% | 3.12% || 0.93% | 0.74% | 3.27%
15 250]r 1.14% | 0.74% | 3.13% || 0.65% | 0.64% | 2.65% || 0.77% | 0.78% | 2.87%
15 500" 0.51% | 1.13% | 5.06% || 0.75% | 0.84% | 4.22% || 0.53% | 0.85% | 2.81%
15 750“ 0.31% | 0.34% | 1.45% || 0.43% | 0.45% | 1.88% || 0.44% | 0.83% | 4.06%
15 1 000" 0.40% | 0.44% | 1.64% || 0.44% | 0.35% | 1.32% || 0.54% | 0.80% | 3.81%

=30, =16, u,=15,0,=12;13=9, 053 =0.9; p;2=0.95, py3 =0.9, pp3 =0.875
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Appendix V.  Simulation Study of Bootstrap Percentile Control
Limits for Major Elements
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V.1  Simulation Study Design

To study the Bootstrap Percentile Control limits, the following simulation study is
designed to evaluate how the total number of observations (n x£ ) and the size of resample will

effect on the estimates of the major element control limits. The study include the following

steps.

1. Choose the process with the correlation structure, standard deviations, and means

are listed below.
1 07 0.9 1.6 3
Ry =07 1 068, =[12|,ue =|15
09 06 1 0.9 9

2. Use the process parameters chosen above to simulate the in-control sample data
according to the design of sample size, number of sample size, and bootstrap

resampling size at different levels, which are listed in Table V.1.

3. Replicate each pool of the total observations from the in-control process sample

data A times that is also listed in the Table V.1.

4. Use the replicated data pool to resample B times of size n, and calculated the

sample major elements for B samples.

5. Compute the control limits by percentile method and estimated by the chi-square

distribution of sample major elements.
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6. Calculated Bias% of the percentile control limits from the sample major elements
control limits calculated from chi-square distribution.

Table V.1 Sampling Plan for the Simulated Study

n K B A
Sample Size number of Resamples No of
No samples Replicates
..... 1o 1000 1 40
_____ 2 {6 ] B | €
..... b ) 2000 f 8
..... 4o B0 100
..... e b0 100 20
..... 6 b 30 e 30
..... 7 e O30 2000 440
8 SO T S S N 50 ... N
..... &) o f 40
S L B I 8 B 1500} ... 0 ...
. S SN N SN VU 2 s 2000 _f . 80 ...
SR N 8 e 25 ] 2500 | 100 ..
LB 8 1 1000 | ... 20 ...
I . S -SSR SUNURE. 0 o 1500 |.....: 30
S = 8 el 0 ] 2000 1. 40 ...
16 8 50 2500 50

V.2 SAS Program for Bootstrap Percentile Control Limits of Major Elements

The original SAS program for Bootstrap Resampling is written in SAS/MACRO
language and can be obtained from the user support documents supplied by SAS Institute Inc.
The onginal program is modified to accommodate the purposes of computing the sample
major elements and percentile control limits for the major elements. The coding of the
program is relatively long; therefore, it is not listed in this appendix. However, interested
reader can obtain the original program from the web site address listed below, or contact the

author for the modified program.

http:\\www.sas.com/techsup/dowload/stat/jackboot.sas
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V.3

Study Results

Chi-Square Control Limits for Sample Major Elements

n k |[M11_UCL|M22_UCL|M33_UCL
6 | 25 | 50174 | 15761 | 4.1401
8 | 25 | 44436 | 14190 | 3.4032
6 | 50 | 57124 | 15120 | 4.6807
8 | 50 | 41447 | 13910 | 32012

Bootstrap Percentile Control Limits

for Major Elemnts

Resample (B)=1000 Bias%
n k Miiuct | Maruer | Mas e | (M1 ued] (Ma2 ue)| (Mas uer)
6 25 5.7238 1.7931 4.5556 | 14.08% | 13.77% | 10.04%
8 25 49077 1.2435 3.8257 | 10.44% | 12.37% | 12.41%
6 50 6.1043 1.6250 4.9337 6.86% | 7.47% 5.40%
8 50 4.3015 1.4502 3.3167 3.78% 4.26% 3.61%
Resample (B)=1500 Bias%
n K Misuce | Mo uct | Masuce | (Mis_uc)| (M2z uer) | (Mas ued)
6 25 5.3798 1.6564 4.3626 7.22% | 5.10% 5.37%
8 25 47422 1.4986 3.6189 6.72% 5.61% 6.34%
6 50 6.0015 1.5751 4.8928 506% | 4.18% 4.53%
8 50 3.9587 1.3559 3.2763 4.49% 2.53% 2.35%
Resample (B)=2000 Bias%
n K My uce | Maaycr | Masucr | (Mis uct)| (Ma2 ucd) | (Mas uer)
6 25 5.1578 1.6528 42415 2.80% | 4.87% 2.45%
8 25 4.5897 1.4652 3.4744 3.29% 3.26% 2.09%
6 50 5.8258 1.6352 4.7888 1.98% 1.53% 2.31%
8 50 4.0985 1.4115 3.1545 1.11% 1.47% 1.46%
Resample (B)=2500 Bias%
n K | Muuc | Maoyer | Masuer | (Mir el | (Mo ued) | (Mas ued) |
6 25 5.1175 1.5996 42425 1.99% 1.49% 2.47%
8 25 4.4988 1.3959 3.5238 1.24% 1.63% 3.54%
6 50 5.8354 1.4846 4.6087 2.15% 1.81% 1.54%
8 50 4.1678 1.3815 3.1987 0.56% 0.68% 0.08%
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