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ABSTRACT

The Shewhart control charts, developed by Walter A. Shewhart in the 1920’s are 

for the detection of process changes in a univariate process. W hen a process is monitored 

by two or more quality characteristics, the use of Shewhart control charts can incorrectly 

identify a process in or out of control. Thus, it is essential to have some control charts 

that are capable of controlling several quality characteristics simultaneously. In 1947, 

Hotelling introduced the T 2 -statistic to monitor a process w ith two correlated variables 

for bombsight tests. Ever since, a great number of methods have been developed either 

as a supplement to T 2 chart to extract more detailed information contained in the 

sample T 1, or for the design of entirely different schemes for multivariate control. 

These methods, however, are not widely used because they are not sufficiently 

informative to be useful in practice.
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In this research, a new method for multivariate process control, called major 

element control charts, is developed to detect any possible changes and identify their 

nature of change in each of the process means under assumed stability in the associated 

variances and covariances. The major element control charts for a p-variate process are 

consisted of p  individual control charts one for each of the p  major elements. Each major 

element is a statistical function of an element on the major diagonal of an inverted 

pxpsam ple variance-covariance matrix, and follows a y 2distribution. The control 

limits for the major elements can be easily calculated using the y 2 distribution at a 

selected significant level. The construction and performance of the major element 

control charts are discussed and evaluated with simulated trivariate normal process data. 

Demonstrated by simulation data of various processes, the control charts for major 

elements are not only effective, but also informative for the control of multivariate 

Gaussian process means. A step-by-step procedure for actual application is recommended 

for the set-up and interpretation of the major element control charts. Issues related to 

sampling strategy, chart interpretation, and the stability of process variances and 

covariances are also discussed with some suggestions.

Professor Tsong-How Chang Date
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1

C h a p t e r  1

I n t r o d u c t i o n

One half century ago, Harold Hotelling (1947) introduced the use of a T 2 statistic 

for multivariate process control. Although statistically efficient and effective, the T 2 

control chart has not been widely used in practice. One major drawback of a T 2 chart is 

its inability to reveal the specific nature of the underlying process changes whenever the 

chart shows out of control. Information regarding any specific causes is extremely 

valuable to the process engineer in his/her investigation and diagnostic analysis for 

corrective actions. Such was recognized early on by many statisticians.

Since the mid-sixties, a great number of methods have been developed either as a 

supplementary analysis to extract more detailed information contained in the sample T 2, 

or for the design of entirely different schemes for multivariate control. These research 

efforts of the last three decades, however, have not significantly advanced the 

multivariate control technology to the point that would satisfy the engineers to actually 

apply it in their work. Recently, the rapid growth of data-acqu'sition technology and 

the use of online computer for process monitoring have rekindled the interest in 

multivariate process control. The new interest, however, demands a method that is not
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only effective in detecting out-of-controls, but also informative and easily understandable 

for routine applications in multivariate manufacturing process control.

1.1 M otivation for Research

Unlike in univariate controls by, for example, Shewhart X and R  charts where 

any out-of-control signal itself also indicates the direction of change in the process 

parameter being monitored, the T1 for multivariate control is a statistic that summarizes 

all the sample variation from each of the variables in the group. Whether an out-of

control may have been caused by changes in one or more of the variables with shifts in 

the means, the variances, and/or covariances, they all tend to increase the sample T 2 

values to  exceed a control limit. This makes T 2 statistic highly efficient in signaling out- 

of-controls, but utterly helpless in the attempt to diagnose the nature of the possible 

assignable causes.

The methods that have been developed in recent years either as a supplement to a 

T 1 chart or as a separate multivariate analysis of the data after an out-of-control signal is 

identified are all designed to learn more about why a sample T2 goes out of control. 

These include the use of principal components, decomposition of T 2, and additional uni

variate control charts. There are also some new control charts that chart cumulative 

residuals from regression, sample principal components and other statistics, without T 2. 

Nevertheless, there remains a definite need of a multivariate process control procedure
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that is efficient, effective and informative. More specifically, Hubbele (1989) states that a 

multivariate control procedure should possess the following capabilities:

1. Correct (and rapid) detection of an out-of-control state.

2. Identification of the variables, among the correlated variables, that caused the 

problem.

3. Determination of the magnitude and direction of the adjustments required to 

bring the process back to control.

1.2 Research Objectives

This research is aimed at developing a method of charting time-ordered, 

independent samples of data for the control of a multivariate Gaussian process with the 

capability listed above. Specifically, the primary objective is to develop a multivariate 

control scheme for the detection and identification of possible changes in each of the 

process means, under assumed stability in the associated variance and covariances.

1.3 Research Results

The proposed method consists of a set of p  control charts, called major element 

control charts, one for each of the p  correlated normal random variables. The p  major 

elements are statistical functions of the elements on the major diagonal of an inverted 

sample covariance matrix of size p x  p . Since each sample major element follows a y 2 

distribution, control limits can be easily calculated at a given significance level. Each of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4

the p  control charts is reviewed for signals of out-of-control whenever a sample becomes 

available. Jointly, all observable out-of-control signals from the p  chart are analyzed to 

determine the specific nature of the shifts in process means. By computer simulation of a 

trivariate normal process, these major element control charts appear to be very effective 

and informative as originally expected. When compared against several recently 

developed multivariate control charts, again by simulated trivariate process data, the 

proposed major element charts show improvements in their uniqueness and sensitivity of 

out-of-control signals. Finally, the major element control charts are not only capable of 

displaying signals of each out-of-control variable, but also its direction of shift in the 

mean.

1.4 An O utline

Chapter 2 presents a review of important and relevant literature in the 

development of multivariate control charts over the past 50 years. It is noted that most 

of the developments are in the control of means with an assumed or implied constant 

variance-covariance structure in control.

The underlying methodology of the proposed control charts for statistical control 

of the means of a multivariate Gaussian process is presented in Chapter 3. The 

methodology is primarily based on the unconditional decomposition of the quadratic 

form, Q, of a multivariate normal distribution. Each of the first p sample major 

elements is expected to have a bias when its corresponding process mean is being shifted.
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The proposed methodology is evaluated in Chapter 4 by using the simulated 

process sample data. The structures of data simulation are designed to examine the 

robustness of the proposed control charts when they are applied to monitor the processes 

of all kinds. Additionally, a step-by-step construction procedure of the major element 

control charts is also presented in this chapter.

Chapter 5 presents a comparative study among several well-known multivariate 

process control techniques and the newly developed major element control chart. It 

reveals the strength and weakness of each technique based on its ability in displaying the 

distributional out-of-control patterns.

A  five-phase application procedure for the major element control charts is 

outlined in Chapter 6. The five phases include: define the process, collect the data, 

analyze the data, interpret and identify out-of-control signals, and formulate, and 

implement follow up actions. Chapter 7 is a summary of the methodology, and a 

discussion of areas for the future research.
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C h a p t e r  2 

L i t e r a t u r e  R e v i e w

Multivariate process control techniques have been around, ever since Hotelling 

applied multivariate control analysis on bombsight data in 1947. The multivariate 

control chart was not used widely like Shewhart Control Chart until recently because of 

the unavailability of fast computing technology and the complexity of implementing 

procedure. During past ten to fifteen years, many statisticians and quality engineers put 

their efforts either to  develop new multivariate process control techniques, or to improve 

current available techniques. The objectives of these research efforts primarily were to 

provide more information about the out-of-control states in a process that can assist 

engineers to easily identify the assignable causes and to formulate correct actions more 

efficiently. Much of this is the result of the growth of advanced information technology, 

and the understanding of the relationship among quality characteristics of the process.

A literature review of the development of control charts for a multivariate 

Gaussian process is given focusing on their applications and performance in a 

manufacturing environment. In Section 2.1, the control charts designed to monitor 

multivariate process means are discussed. In most cases, the multivariate control charts 

for the process means are constructed under the assumption that the process stability in 

associated process variances and covariances is in-control. Several currently available
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multivariate control procedures for checking process variability are reviewed in Section 

2.2. In the last section, several important issues of the development of multivariate 

process control charts are discussed.

2.1 Control Charts for Multivariate Mean

Research efforts in the development of the process control for multivariate means 

are directed in three main streams. The first stream makes its efforts of improving the 

performance of T 2 control charts by improving the sensitivity of control limits and 

obtaining better estimations of the process parameters. The second stream acts on 

designing the supplementary charts to enhance the interpretation of out-of-control 

signals that are detected by T 2 control chart. The last stream of the research efforts 

intend to develop multivariate statistical process control charts that are able to provide 

diagnostic information about the change in the process means without depending on 

T 2 control chart to signal the out-of-control states. In this section, the fundamentals of 

traditional T 2 control chart will be reviewed first. Then, each of the three main streams 

is discussed.

2.1.1 T~ Control Chart (Hotelling, 1947)

The T 2 statistics derived by Hotelling at 1947, which is used for the overall 

control of the process, is a generalization of the t-test, and for single observation, this 

takes the form:
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r!=(x-n0)rs-'(x-n,,), (2-i)

where X  is a column vector, and E and |i0 are the process variance-covariance matrix and 

process means, respectively. Derived by Hotelling, T 2 is a statistic related to F 

distribution with adjustment factor involving the number of samples (k) and number of

kp
variables (p) as T 2̂ a =  — , which is used to set up the upper control limit

rZ p  4" 1

for r 2at the significant level of 100a%. If the number of samples is large enough, T 2 

may be approximated by the y2 distribution w ithp degrees of freedom.

Although T 2 control charts are statistically efficient and simple, they are not 

very informative for diagnostic analysis of out-of-control signals as to the nature of their 

assignable causes. The T 2 control chart also suffers three major drawbacks. It loses its 

optimality property against more specific shifts in mean, it confounds location shifts 

with scale shifts, and its signals are not associated with any particular shift or variable but 

must be diagnosed after the fact (Hawkins, 1991). In addition, Matrangelo, Runger, and 

Montgomery (1996) have also pointed out that Hotelling T 2 is based entirely on the 

most recent observations and consequently the procedure signals only when a relatively 

large shift in the mean vector occurs.

2.1.2 Improving T 2 C hart

Alt (1984) introduced two-phase procedure to apply T 2 statistics in controlling 

the multivariate process means. Phase I consists of using the charts for retrospectively
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testing if the process is in control. Control charts in Phase II are used to monitor the 

future process. To improve the capability of analyzing the data in Phase I for 

determining the status of a process, Wierda (1994) and Sullivan et al (1996) both evaluate 

the methods that are commonly used to estimate the process variance-covariance matrix.

When only one observation of each sample is collected in Phase I, all the 

observations are pooled to estimate the mean vectors and covariance matrix. Sullivan 

and Woodall (1996) have found that T z control procedure is not effective in detecting a 

shift in the mean vector because the covariance matrix is badly estimated. To improve 

the estimate of the process variance-covariance matrix for multivariate individual 

observations, Sullivan et al. (1996) suggest using concept of moving range method in the 

univariate case. The procedure uses the vector difference between successive 

observations to estimate the in-control covariance matrix for the process.

For a process with multiple observations of each sample, average of sample 

variance-covariance matrices is used to estimate the process variance-covariance matrix. 

This estimator is a reflection of the ‘within sample dispersion’. It can not be affected by 

special causes of variation, which is an appropriate application for detecting the shifts in 

the mean vectors. To apply this method, the relationship among sample size (n), number 

of samples, and the number of variable has to satisfy k(n- 1 )> p .  (Wierda, 1994)

Lowery et al. (1995) summarized a procedure to establish the most efficient 

control limits for T 2 control chart at Phases II, which assumed that trial control limits 

of Phase I for use in online statistical process control, has been established. The upper
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control limits should be calculated exactly as a function of F  distribution. Using 

individual observation at Phase II, 2 and |i0 are usually estimated by the pooled sample 

variance-covariance matrix, S, and average of all observation vectors, X . The T1 

statistics used instead of Eq. 2.1 is T z = (X —X)r S-1(X -X ) with the exact upper control

limits as  ̂ ,p * - p  t îat were defined by Ryan (1989). However, Jackson

p{k~  l) 
( k ~ p )

(1985) suggests that for large k (k> 100), the UCL of  ^ F apk_p would be a fair

approximation.

For charts constmcted using sample size, n>  1, the average of sample variance- 

covariance (S) and average of sample mean vector (X) are used to estimate 2  and (i

respectively. The Hotelling T z statistics in Phase II is defined as «(x- xfs'^x-x),

and the upper control limit is defined as UCL = + ——F  . . . Number of
k n - k - p  + \

samples (k) and the sample size (n) play an important role in the procedure of estimating 

the control limits. For detail discussion, Tracy et al. (1992) had discussed how the 

number of samples affects the determination of control limits for the individual 

observation case. In addition, Lowry et al (1995) had shown in their evaluations of the 

effects of the number of samples when interacted with two different levels of sample size 

and six levels of number of variables.
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2.1.3 Supplementary Control Chart for T2 Control Chart

One of the major drawbacks of the T 2 control chart procedure is that it does not 

directly provide the diagnostic information of the out-of-control signals such as which 

variable causes the problems, and how the variable has been changed. In order to address 

appropriately these drawbacks of T 2 control chart, a number of methods have been 

proposed in the past twenty years. The similarity of these procedures is that the first 

step of them requires checking the out-of-control signals or evaluating the overall 

performance of T 2 control chart. Then, each of these methods will be applied to  

interpret the status of the process according to the signals given by T 2 statistics.

One of these procedures, named Multivariate Profile (MP) charts, is proposed by 

Fuch and Benjamoni (1994). Its concept is relatively simple. MP chart plots a set of bar 

chart along with T 2 statistics. The bar charts consist of a horizontal base line that is 

plotted at the value of T 2 and p  bars for a p-variate process. The size of each bar is 

determined by the difference between sample mean and the process mean, and the 

standard deviation of each variable. To interpret the MP chart, first find the highest 

T 2 value, and then paint each bar with different color. The gray color is the variable that 

exceeds two standard deviations, and the black bar indicates this variable exceeds three 

standard deviations.

Kourti and McGregor (1996) provides a set of plots based on Principal 

Component Analysis to detect the variables’ contribution to the out-of-control signal
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which was identified from the T 2 control chart. There are three steps to establish the 

charts.

1. Detect the out-of-control signal from a sample observation vector, X, whose 

T 1 value is above the control limit.

2. Check normalized scores of the sample observation, X, based upon Principal 

Components Analysis, find scores with highest values. (Bonferroni limits 

could be used on the score chart as rough guides.)

3. Calculate the variable contributions for these high scores; investigate the 

variables with high contribution.

Based on the total contribution of the variables, one can point out a variable or a 

group of variables that caused the out-of-control signal in T 2 control charts. These 

variables need to be investigated to assign the causes.

Many researchers have suggested using decomposition techniques for identifying 

the particular subset of quality characteristics that cause an out-of-control signal. These 

procedures basically decompose the T z statistics into independent parts, each of which is 

based on a subset of the p quality characteristics with similar properties. The 

decomposed parts are known as T 2 variates that are used to determine which variables 

are causing out-of-control states.

This approach first is brought up by Murphy (1987) to partition the p quality 

characteristics into two subsets. One of the two subsets-must be the subset that is
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intuitively suspected to be directly related to the cause of the out-of-control signal. There 

are a couple of disadvantages for this method. First, the number of possible selections of 

each subset is large for the process with large number of variables, and the second, choice 

of the subset depends on user’s intuition, which introduces the risk of misidentifying the 

true assignable causes.

Mason, Tracy, and Yong (1995, 1997) decompose T 2 of ap-variate process into p  

independent components, each of which provides information on the variables that 

significantly contribute to an out-of-control signal. Wierda (1994) suggests a step-down 

procedure that is based on the priori knowledge of the ordering among subsets of the 

variables. According to the ordering, the procedure partitions the mean vector into q 

sub-vectors and correspondingly q sub-hypotheses to test that one of the sub-vectors of 

the mean does not shift. For each of the q sub-hypotheses, a control chart is plotted. It is 

not necessary to examine all variables while applying this approach. However, it is very 

difficult to select an appropriate order of all the variables.

Timm (1996) proposed an alternative step-down method to use finite intersection 

tests (FIT). Both Wierda’s step-down procedure and the FIT procedure are based on 

conditional distributions to make a choice of ordering the original variables. Timm 

(1996) states that the FIT method is uniformly and more powerful than the step-down
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2.1.4 Multivariate Control Charts Based on Data Transformation Techniques

Several important data transformation techniques have been used to develop new 

multivariate control charts for detecting the mean shifts. The principal component 

analysis and regression-adjustment of process variables are two major techniques that 

have been proposed in the literature and they do not rely on T 2 statistic to  signal the 

out-of-control states. In this section, both the principal component (PC) analysis and 

regression-adjustment techniques are discussed in a great length.

2.1.4.1 Principal Component Charts

Jackson (1985) proposed and demonstrated the details of the transformation of 

the original variables into Principal Components (PC) and monitoring these new 

orthogonal variables with the original variable simultaneously on control charts. The 

applications of Jackson’s proposal had the following potential problems. The control 

charts of the transformed variables are a set of univariate control charts; each principal 

component is a combination of each of the original variables. While the out-of-control 

signals are identified from the sample data of principal components, it is difficult to 

interpret which original variables cause the signals. Unless the application can either 

establish a set of pattern to identify the shifts in process means, or set up another set of 

charts to help identify the contribution of each original variable such as Jackson’s 

original proposal or the normalized score plots proposed by Kourti (1996). Otherwise, 

the principal components analysis on multivariate process control is difficult to apply.
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Chang (1991) have found a unique pattern for monitoring a bivariate process by 

plotting the Principal Components (PC) of the original sample data. Design of this 

procedure seems to have an advantage over T 2 control chart. The patterns of principal 

components based on the process mean shifts are summarized from the simulated data 

provide the information on the sources of assignable causes (Chang, 1991). The 

distribution pattern for the bivariate process control is as shown in Figure 2.1.

™  (0>+ 0  (+1.+U  (+1,0) c-1,+1) (+1,-1) (0 ,-1 ) (-1 ,-1) (-1,0)

£ 3  (0 ,+ t)  (-1.+1) (-1,0) (+1.+1) (-1,-1) (0 ,-1 ) (+1,-1) (+1,0)

Mean Shifts (h„ h j

Figure 2 . 1 Distribution Patterns of Out-Of-Control Signals for Bivaraite 
Control (Reproduced from Chang’s 1991 paper)

In Chang’s (1991) study, it is also found to extract a unique pattern for 

multivariate process control chart by using Principal Components becomes too 

complicate as the number of variables gets large. Although the sample principal 

components that are calculated from a simulated trivariate process sample data do show a 

distributional pattern, which the patterns do not agree with twenty-six out-of-control 

states based on simulated shift combination directly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

16

2.1.4.2 Regression A djustm ent of Variables

Hawkins (1991, 1993) has suggested that regression adjustment of variables may 

be an effective alternative to classical multivariate control chart. Hawkins combined 

regression control chart (Mandel, 1969), with a result due to Healy (1987) and proposed 

to regress the variable X t on a subset of (p-1) variables X m such that I t tn ,  depending on 

the natural order of the process. Let H l be the P*1 variable of H , where

H  = diag[diag(z-1)]'1/22:-l( X - p 0). (2.2)

H , is the regression residual when variable / is regressed on all other variables, 

standardized by unit variance. This can be used to test the null hypothesis that the Z1*1 

component of the mean vector did not shift. To chart the H  value of each variable, 

Hawkins (1991) proposed to make a univariate CuSum chart. For a p-variate process, p 

CuSum charts are plotted.

In order to evaluate the performance of the regression-adjusted sample data, 

Hawkins plots the simulated H , on both the CuSum chart and traditional X  — R chart. 

The results turn out to be that both charts can detea the simulated change. Obviously, 

it is possible to use a classical control chart for the H , instead of a CuSum control chart.

It also can be concluded that Hawkins’s method performed well if the shifts occurred in 

a single component, or in a pair of lower correlated components. (Wierda, 1994) Besides, 

Hawkins does not show how  sensitive the method would be if change in the standard 

deviation and shift in mean both occurred in the same variable.
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2.1.5 Multivariate Techniques for Detecting Small Shifts

Because the design of T 2 control chart is based on the most recent observations, 

it becomes relatively insensitive to small and moderate shifts in mean vector. Several 

researches extend the concepts that are used in the univariate case such as the CuSum 

Control chart and Exponentially Weighted Moving Average (EWMA) procedure to 

improve the traditional T 2 control charts to detect the small shifts. The advantages of 

these procedures are that they not only use the most recent observations, but also use the 

observations collected in the past.

Two major multivariate CuSum control charts are developed based on the 

sequential probability ratio test (SPRT) by Healy (1987) and Alwan (1986). Essentially 

both methods are the extension of the univariate CuSum approach, however, Alwan’s 

procedure is not based on the sequence of original variable, but rather on a sequence of 

transformed T 1 variables.

Lowry et al. (1992) proposed Multivariate Exponentially Weighted Moving 

Average (MEWMA) control chart which is a natural extension of univariate EWMA 

control procedure. Both multivariate CuSum and MEWMA methods have been shown 

that they are relatively sensitive to the small shift in the multivariate process means, 

however, they still cannot provide the information regarding the nature of the change. 

In addition, a design procedure for those control chart and guidance for chosen 

parameters are also needed for practical applications.
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2.2 Control Charts for Multivariate Process Variability

As discussed earlier, it is not sufficient to monitor only the means of the quality 

characteristics associated with the product, but measures of the process variability should 

be controlled as well. In the univariate case, the sample range is often used as a measure 

of process dispersion, thus the R-chart is the established control chart to monitor 

dispersion of the process. The variability of a multivariate process is summarized by the 

variance-covariance matrix, An analogous procedure would be very much helpful 

to monitor the dispersion of a multivariate normal process. However, often problems 

are encountered within the industrial realm where it is essential to examine possible 

change in the relationship among related variables.

In many instances, the change in process variances and covariances went 

undetected while the correlation between two variables changed. Although checking the 

process variability is such a critical issues for the multivariate process control, 

unfortunately, only very limited research efforts have been devoted on developing the 

multivariate control charts for controlling process dispersion. In this section, most of the 

available control charts for multivariate process variability will be discussed.

2.2.1 Control Charts for S

In extension of the idea of range control chart, Alt (1985) proposes two control 

charts to monitor process variability. The first control chart is a direct extension of the 

univariate S2 control chart. The procedure is based on the repeated tests of significance
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of the hypothesis that the sample variance-covariance matrix, S, is equal to a specific 

population variance-covariance matrix, 2. To apply this approach, the following statistic 

for the £th sample is plotted on the control chart

r u n
Wt — —pn  + pn ln(n) — « In y-j- +tr\L~lAj), (2-3)

|2 |VI I /

where At = { n - 1)5,, 5, is the sample variance-covariance matrix for sample i, i= 

1, 2,...,n, and tr is the trace operator. If the value of Wt plots above the upper control 

limit UCL = XatP(P+1>/2 > t îe process is identified as out of control. The second control

chart is constructed to monitor the sample generalized variance-covariance, using the 

determinant of S , |S|. The method treats the determinant of sample variance-covariance,

|S|, as a variable, and use the mean and variance of |S| to construct the control limits.

Let £(js|) and U(jS[) be the mean and variance of |S|.

Use the property that the probability distribution of most |S| is contained within 

the interval of £(S)±3-^U(|S|) to construct the control limits of |S|. In addition, if the 

variance-covariance matrix is estimated by sample variance-covariance matrix, |2 | should 

be replaced by [S|/bx which is an unbiased estimator of |2 | and 6, is a constant 

determined by sample size and number of variables. Furthermore, as part of this 

procedure, Montgomery (1991) suggest that it will be a good idea to use univariate 

control charts for variability in conjunction with the control charts for |S|.
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Chang (1991) proposed ro use log(Sj in stead of |S|, since it had been shown 

theoretically that the statistic of |S| has more normality in its logarithm. To construct 

control chart of log|S|, first, calculate the determinant of each sample variance-covariance 

matrix for the in-control process. Then, find mean and variance of log|S|. A control

chart with 100(1 — a)%  probability limits is constructed as logjSj ± Z *JcJva4 ° $ S\) >

where logjS| is the mean of logjS[, and is a/2  percentage point of the standard 

normal density.

In addition, Bonferroni confidence intervals are proposed to  graphically interpret 

and identify the nature of out-of-control conditions that do occur on the logjS| control

chart. A common problem with control charts developed using |S| or log|S| is that 

different matrices can have the same determinants. For example, consider the three 3x3 

variance covariance matrices:

" 236 1336 1.080" "5.76 0.921 2.70" " 1.44 1.843 0.675"

s l  = 1336 1.44 1.613 , s 2 = 0.921 023 0.604 CO II 1.843 3.686 1210
1.080 1.613 0.81 2.70 0.604 225 0.675 1210 0.563

Now, |St| = |S2| = |S3| = 0.298, yet these three matrices convey considerably

different information about the process correlation among three variables and process 

variability among the samples. Therefore, Alt and Smith (1988), and Montgomery 

(1991) suggested that the appropriate univariate procedures to m onitor the individual 

variances are necessary while the control charts based on |S| are applied. Chang (1991)
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proposed a new chart, namely Z**, to monitor the change of process's correlation 

coefficient along with the control chart of logJSj for controlling process variability. Here

Z** is a measure based on the Hotelling’s investigation of Fisher’s transformation of 

correlation coefficient between two variables.

2.2.2 Generalized T 2 Statistics

Another line of approach is due to Hotelling (1947) called Generalized T 2 

statistic. Jackson (1985, 1991) proposed to use three statistics available from Hotelling 

T 2 to monitor the process means, variances and covariances simultaneously. Three 

statistics are: T 2, a measure of overall variability, , a measure of the distance between 

the mean of sample observations and the target mean, and T£ , a generalized measure of 

the dispersion of the sample around its own mean. Among them, of each sample is a 

measure for controlling the dispersion of the process. The relationship among these 

three statistics can be written as in Eq. 2.4.

T2=T£+T]5 (2.4)

Based on Jackson (1985), it suggests that T 2( and for multivariate process can 

be used as average and range chart for the univariate case for statistical process control. 

There are cases where, because of cost, time, the nature of the test or whatever, it is not 

practical or possible to use averages for short-range process control. This is true whether 

the control procedure is univariate or multivariate. However, in the multivariate case,
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the three T 2 statistics may be useful as summary statistics to evaluate the process 

performance. It is relatively difficult to apply them as a chart to monitor the process 

variability.

There have two main concerns of the proposed control chart reviewed in this 

section. First, the statistics and/ or the control limits depend on the estimates of process 

variance-covariance, however in general, the process variances and covariances are 

unknown. Second, the control scheme for process variability only signaled the out-of- 

control state without further information to present the nature of change in the process 

variances and covariances.

Because of the similar concerns discussed above, Wierda (1994) presents and 

evaluates four methods to test the hypothesis that an unknown process variance- 

covariance matrix is constant in-control. The four methods include Likelihood Ratio 

Test (LRT) statistics, the Nagao's test statistic, Quotient of the generalized variance, and 

univariate test statistic. Furthermore, he also proposes a hierarchical procedure with 

LRT testing that could signal the change in the variance-covariance matrix. The 

complexity of Wierda's procedure might improve its performance if user understood 

underlying statistics. It is still very far from the possibility of practical application even 

though the high-speed computers are available. Indeed, the other methods mentioned in 

this section are relatively simple and have easily understandable statistics.
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2.3 Some Issues on Multivariate Process Monitoring

• Data transformation or standardization tend to lose potential important information 

in the original data.

A lot of information will be lost or altered when the data transformation and 

standardization are applied. We usually do not know what has been missed, and no one 

really pay much attention to it. It is necessary to make sure the techniques can preserve 

the information as much as possible. Moreover, we should make sure at least that the 

information is not modified.

• Certain process data are inherently autocorrelated in time or in space, many, 

however, are time independent

If process data are dependent on time, the data should be treated with time

concern. It is not easy to assure that a given process is always dependent on time.

Because any data collected from process, all of them can be fitted with time series model. 

Then, one will try to use control chart with autocorrelation concern, which might be 

totally misleading. When the data is modeled by time series, it is assumed that the 

residuals are independent which might model the error into it. Because of the concerns, 

many researchers focus on the process, which has timed autocorrelation concern that 

only applied to process industry. (Montgomery et al., 1993).

• Most multivariate control charts for the process means heavily rely on two

assumptions. First, the sample data are always well behaved following a multivariate
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normal distribution. The second one assumes that the process variance-covariance 

matrices of the samples are well maintained as a constant that can be estimated by the 

sample data.

Most multivariate control scheme developed without even considering the 

evaluation of the stability of a process. They assume that the multivariate process is 

stable and in-control. However, to improve the current multivariate techniques for 

process mean, one thing for sure needs to be emphasized on is to develop a effective, 

efficient, and easy to apply multivariate control chart for checking the stability of a 

process.

• Many techniques are developed to interpret the out-of-control signal that was 

identified from T 1 control chart. What if T 1 misidentify the signal or it just simply 

is not able to show the process mean has been shifted?

In a recent assessment of multivariate control charts, Mason et al. (1997) had 

concluded that two aspects must be considered of evaluating the out-of-control signals 

from T 2 control chart. First, the overall significance level of the simultaneous use of p- 

univariate control chart must be calculated and is known to difficult to determine it. 

Second, not necessary only one quality characteristic causes the out-of-control situation 

at one time. Therefore, many other techniques are more efficient and effective than the 

application of T 2 control chart.
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C b  a p t e r  3 

M e t h o d o l o g y

This chapter presents the underlying methodology of the proposed control charts 

for statistical control of the means of a multivariate Gaussian process. It is assumed that 

the process variances and covariances are not subject to change or in statistical control. 

The methodology itself is quite straight forward in that it is a decomposition of the 

familiar quadratic form of a multivariate normal distribution, Q = (X —p.)2_I(X—p.), or

the classical Hotelling’s T z . Unlike many of the earlier work with the T 2 as discussed 

in Chapter 2 , this research proposes the use of a certain portion of the decomposed 

elements of the quadratic form including the inverted variance associated with each 

variable. These are to be called the major elements of Q . Since the Q is also a measure 

of the distance between two vectors X and p., each major element of 0  containing 

(X, —p./) expresses the distribution of X, centered at p ; . All the major elements of ap-

variate process are independent of each other; therefore, they can be analyzed 

individually.

When applied for multivariate process control of the means, each such sample 

major element serves as an indicator of the state of its mean independent of the states of 

the other means. Together, the p sample major elements are capable of characterizing
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simultaneously the states of all the p  means of a process. What follows in this chapter is 

to propose a decomposition of the Q such that it allows for the selection of p  

independent major elements, each of which follows a chi-square distribution with one 

degree of freedom. Based on the yp distributions, control charts of sample major 

elements, one for each of the p  means, may be constructed for multivariate statistical 

process control. Additionally, a complete set of distributional patterns of various out-of

control signals of a trivariate process will be developed as an aid in chart interpretation.

This chapter is organized as follows. The multivariate normal distribution will be 

reviewed in section 3.1. Section 3.2 will present the method of decomposition of a Q 

and define the major and minor elements of a p-variate Gaussian process. Section 3.3 

describes the estimation of process parameters from sample data and the calculation of 

sample major elements. Section 3.4 presents the yp distribution for the sample major 

elements, which provides the basis for the proposed control charts. In Section 3.5, the 

expected sample distribution patterns of each major element control chart of a trivariate 

Guassian process is developed with illustrations. It is also shown in this section that all 

26 possible combinations of shifts in the three means have unique distributional out-of- 

control signals to be displayed on the three major element control charts.

3.1 Multivariate Normal Distributions

The multivariate normal density function is a generalization of that of a 

univariate normal with mean ft and variance a 2,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

27

1 ~ f ~ )
/ ( * ) = — = e  , - c o <

a-JlTr
X  <00 (3.1)

The term in the exponent of the univariate normal density function of Eq. 3.1 

may be written as

f — - 1  =  (^ — 2) 10 *̂—fi) MV cr

which, measures the squared distance from x to p. in terms of the standard deviation. 

For ap-variate normal process, Eq. 3.1 can be generalized to

1 -Ifx-p'flr'fx-pl 
/ ( x ) = ^ -yP77ĵ |1/Te -oo<x, <oo, / = l,2 ,...,p , (3.3)

where p is a p x l vector of the mean values of a normal random vector X and IT1 is the 

inverse of the variance-covariance matrix of X.

"CTu (T [2 V 1 o '2 . . .  J p '

£  =

rl 
...

b

• -  <*2p , and £  1 =
o '2 a 22 . . .  (j 2p

CT2p 1§:
b _o1/7 v 2p i

. 
& b

The symmetrical covariance matrix £  is positive definite, so the squared distance 

from X to p is given by (Johnson and Wichern, 1992)

e - C x - n ^ z - f x - n ) ,

which is also known as the quadratic form of a multivariate normal.

(3.4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

28

3.2 Decomposition of A Quadratic Form

Suppose a process is characterized by a p x l random vector ’X.'=[xl,x2,.. .,x  ] 

following a p-variate normal distribution as defined in Eq. 3.3. The quadratic 

fo rm ,(X -p )r S -I(X -p )  ofEq. 3.4, can be expressed as

Q  =

(x, -P ,)V  +(x2 -p j 'a 22 + —■+ (x, -p ,)2<JPP +

2[(x. -^Xx2 +(x, -p,Xx3 -P jV 3 + ... + (x , -H,V{p_,>,']J

or as

Q = ^ ( x/ - ^ / ) 2^ + 2 f ;  ^ ( x / -(a / Xxm- ^ m>yfo’, l ,m = l,  2 ,...,p ; (3.5)
1 = 1  1 = 1  tT F s l + l

which is a linear combination of two types of terms. The first type of terms in Eq. 3.5, 

^ ( x ,  — p./) , is the sum of functions of squared distances from the means, one for

each X /. The second type of terms involves cross products of the distances between two 

variables.

For control chart applications, it is important to employ the sample statistics that 

are sensitive to any changes in the process parameter being monitored. In multivariate 

process control, it is also desirable that each sample statistic to be charted is capable of 

clearly reflecting one specific change in only one variable with no influence of changes in 

other variables. It is seen in Eq. 3.5 that only the first type of terms appears to have the
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potential to provide the sensitivity uniquely for each of the p  variables. The following 

development of this research is based on this observation.

Now, the major and minor elements of a Q are defined as follows:

3.2.1 Major Elements

The p terms of the first type of elements in the distance function of Eq. 3.5 are 

defined as major elements to be denoted by M „ .

= (x / - p / )2a //, / = 1,2,..., p. Q'Q

3.2.2 Minor Elements

Thep(p - 1) cross-product terms of the second type in Eq. 3.5 are called the minor 

elements to be denoted by M lm.

M lm = (3.7)

The value of a sample minor element M lm will change if either or both p./ and pm 

are shifted to p, -l- Ap, and /Jm + A//m . However, the value of major element M„ will 

change only when P/ is shifted to p, + Ap, and will not be affected by any shifts in the 

other p ’s. Thus only the sample major elements need to be charted, one for each of thep 

variables, to monitor each of the p  process means. Being a squared distance between a 

sample value from the mean, each sample major element should be a highly sensitive
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statistic in detecting a shift in the mean. It is reminded that such major element control 

charts will be effective provided that the process covariance structure remains in 

statistical control.

3.3 Sample Major Elements

In practical applications, the process mean vector p. and covariance matrix Z are 

generally unknown or unspecified, they are estimated respectively by a sample mean 

vector X and a sample covariance matrix S .

Suppose that k samples of size n each are collected from a process while it is in 

statistical control. The / h observation of sample i on variable /  is denoted as X j , .  For the

i1*1 sample, its sample mean vector and sample variance-covariance matrix, respectively 

denoted by X, and S ,,

X. =

X . ' S i. 11 S i, 12 S i.lp

S i,l2 S i, 22 S '.2p

S ' * . / u p S i.2p S i,pp _

= k J P*P
(3.8)

are obtained by

x u m d s>-"” = T ^ Z ( xy . / - x/,/)(x!/>. -*/.™)T l,m = U 2, . . . ,  p.n n i J=I
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Then, the process mean vector, p., and the process variance-covariance matrix,

* k

-  ? x< 2 s -
S , may be estimated by X = —----- , and s = - ^ — = [jtaL .  respectively. The inverse

k  k  p p

matrix, S-1, of the sample variance-covariance matrix S is calculated by

s "  4 " L  = ( -1)J+m r ’/m (3.9)
P*P

where S/m is the matrix obtained from S  by deleting 7th row and mth column and “ | | ” 

is the determinant of a matrix.

Let the pxp population correlation matrix p be estimated by its corresponding

R =

matrix R, which

follows:

*12

-\/*ii*u ■v/*H*22

*12 *22

V*U*22 V* 22*22

*2,

’i p
■fixi s pp

S2 P

4S 22S pp

PP

' S PPS  PP

1 r,12

r*p r*p

'\p
2p

■y/̂ nS  pp - J s 22s pp

where the r^ ’s are sample correlations between variable 7 and m  for l ,m = 1,2,...,p.

(3.10)

Now, let the pxp  sample standard deviation matrix, , be
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yX =

“Js  u 
0

0 0

0 0

0
0

0
0

0

fs„,

(3.11)

Then, S can be obtained from V ^  and R  by

S = V *RV K,

and the determinant of S by

(3.12)

|s|=|v%vK|
Ir I— V / 2

W ith rX
=  - f in  ' >lt  *s a ŝo true  chat

\ - { y J s \ i s n " ’s p p J \ R

— 5,|j'22'"-y/,p|R|

= f f r « V i
/= !

(3.13)

Let Rto be the matrix obtained from R by deleting row and column, and 

be the matrix obtained from by deleting Ith row and t h column. Similarly, S/(n 

can be obtained by S/m = V/*R/ m and the determinant of S /m by the following

expression,
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From Eqs. 3.13 and 3.14, the elements of S , s m, can be written as

Thus the Ith sample major element, M jn , is

where

smce w
^<7=1, q=t J

Finally, the sample major elements may be expressed as

33

S„ = V«| = |v«|-|R,„|-jv |̂, l,m = l,2,...,p. (3.14)

T  • R tm
r)i

i T . V i

l,m = 1,2,...,p. (3.15)

i=i

(3.16)

( ]|R//i iR
s ,  _  (_ l f , .W y J  = .J ? s l , , ,  li2,...iP,

su Rl
t i

< ?=*
S„ IIRI

(3.17)

Wu- = (3.18)
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which shows that each sample major element is simply a squared standardized normal

deviate, modified by a correlation factor
J RL

of ap-variate process.

3.4 Sampling Distribution of Major Elements

The sample major element Ma of Eq. 3.18 is a function of {X u —X ,)  which is a 

normal random variable with the expected value and variance given by

e [x u - x )  = e {x ,j ) - e {x ! ) ^ - Vl = 0, / =  l,2,...,p,

= v a r(x ,/ - ^ / )

= wax{xi t ) — 2  cov + var

(3.19)

, I = 1,2,...,p. (3.20)

“ it
n

< kn ,

+ M—
I n ) [ k n j

Thus, [ x u ~X,^j is a iV^O, distribution. Let Z/ be the standardized

normal variable of — X,^j. Then
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2 ,=
( x u - x ) - o (3.21)

-o\

Subsequently, Z f  follows a Chi-square distribution with one degree of freedom,

that i:is

7
k - 1

kn

(3.22)

And

a ,
£ - 1
Aw .1 > (3.23)

With a large number of samples (k>50, say), the practice of control charts has been to 

simply substitute cr,, by s„ in Eq. 3.23. Then, approximately,

(xu-x,f k- 1

nk
/  =  1,2 (3.24)

O n  multiplying Eq. 3.24 by
J RI,

, it then follows that the sample major element has

the adjusted chi-square distribution with one degree of freedom. That is,
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which provides the basis for control limit  calculations and the interpretation of each of 

the p control charts of sample major elements.

3.5 Expected Out-Of-Control Patterns of A  Trivariate Process

In Section 3.2, it was speculated that the sample major elements should be highly 

sensitive and unique to any shifts in the process means, individually for each mean and 

simultaneously for all p  means. To demonstrate how the sample major elements 

distribute themselves on their respective control charts when the process is out of control 

because one or more shifts in the process means, a trivariate process is analyzed in this 

section.

Consider a trivariate Gaussian process, p -  3, with a mean vector p. and a 

covariance matrix I .  Let hb be a vector Qh151, h282, h38 j]T of the shifts in the mean 

vector, p, where each of the h, may have values [-1,0 ,1] denoting respectively a 

downward shift, no shift or an upward shift of size 5/ in the process mean of X,. For

each sample, a sample mean vector X = [xi,x2,x3]r is analyzed for possible signals of any

one or more shifts in the means. Since the process is subject to any shifts in the means at 

any time, the process variables may be written as Y = X + hb for the following analysis. 

The sample mean vector of Y  is
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The expected difference between Y  and the grand mean X is

£ ( y  -  x )=  £ ( x  + 65 -  x )=  e ( x  -  X  + As)= e ( x  -  x )+  hS

Since E ( x —x )= o ,

'(y  —x )= /z 8 . (3.27)

The value of the expected sample major element associated with X, is given as follows.

E[M//] = £:[(y/ - x , ) V '] ,  for/ = 1,

=  E (y/ - ^ / ) 2 1R "1
Sn  iRl

(3.28)

where y, is the sample mean of Yt

When the process variance-covariance is stable and in-control,

treated as a constant. Therefore,

J RI,
may be

E [ w , ] = s l £ (y/ - x / ) 2 , l — 1,2,...,p. (3.29)

From Eq. 3.24 and Efoi2) = 1, the following result can be obtained.
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M l _ tr (x,-x, +h,8,J

sll
— n.

1i

= E

= E

(x^-x, ) 2  ̂ (x/~Xy)  ̂ (^/5/)

( x / - x j + 2 h5E 'X /-X/'
+ E

1-----
<N_to*
1

 ̂ sn / s"

* - i , f o s , ) 2
nk s„

Accordingly, the expected value oiM a is given by

, / = l,2,...,p. (3.30)

R

k - l
nk

A z i+ M 2
nk s„

" ^ V caaJ V
R

I = l ,2 ,...,p. (3.31)

VI i /

Eq. 3.31 shows that the expected value of a sample major element will be very large if a 

shift actually occurs, because the amount of the shift is squared in the expression of Mn.

3.5.1 Shift Combinations

When a process is monitored for three process variables, there are a total of 33=27 

possible states of the three process means, including the one with no shifts in any of the 

means, as shown in Table 3.1. The shift size 5t will be expressed, as usual, in terms of the

standard deviation of X/.
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Table 3.1 Possible shift Combinations for A Trivariate Process

Variable Shifts l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
x, hi 0 0 0 0 0 0 0 0 0 + + + + + + + + +
x2 h2 - - - 0 0 0 + + + - - - 0 0 0 + + + - - - 0 0 0 + + +
x3 h3 - 0 + - 0 + - 0 + - 0 + - 0 + - 0 + - 0 + - 0 + - 0 +

+ : the shift is upward, or an increase in the mean.
0 : no shift
—: the shift is downward, or a decrease in the mean.

For any multivariate control charts to be informative for the identification of the 

specific nature of shifts in each of the p  means, when a process is judged to be out of 

control, the out-of-control signals of all thep  control charts must exhibit unique patterns, 

one for each possible combination of the shifts.

3.5.2 Possible Correlation Structures of A Trivariate Process

In practical applications, correlation coefficients are often used to represent the 

dependency relationships among the variables. Out of a total of eight, mathematically 

possible, pair-wise combinations of the three correlations, there are only four such 

combinations that can exist physically in a real process. These are listed in Table 3.2. 

For example, if p12 is positive, then p13 and pB must have the same sign to be physically 

meaningful.

Table 3. 2  Possible Correlation Coefficient Combinations

P12 P13 P23
1 + + +
2 + — -
3 — + -
4 — — +
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M oreover, in  statistical analysis, w e o n ly  need to  consider the fo llo w in g  tw o  

distinct types o f  correlation  structure need to  be considered:

(a) AH Positive Correlations => [p I2 > 0, P l 3 > 0 ,  P23 >  o]

(b) Two Negative and one Positive Correlations => [Pl2 <o, Pl3 > o, P23 <o]

The expected out-of-control patterns of the sample major elements will be 

different between the two processes with different correlation structures.

3.5.3 An Example of Expected Patterns of Major Element Distributions

To demonstrate the expected out-of control patterns corresponding to each 

possible combination of the shifts in the three means, a trivariate process where all three 

correlations are positive has been analyzed as presented in Figure 3.1. Part (a) of Figure 

3.1 gives the data about the process which includes correlation and variance-covariance 

matrices, a mean vector, and the type and size of the shift in each mean. A stacked bar 

chart in Part (b) presents the expected sample major elements, according to the shift 

combinations listed in Part (a). The various lengths of the stacked bars in Figure 3.1 

reflect the expected magnitude of the changes in the respective sample elements.

It can be seen that the plots of the expected sample major elements of Figure. 3.1 

clearly indicate which of the three process means may have been shifted. This is 

definitely an advantage over most conventional multivariate control charts. However, 

there are only seven unique patterns of the three sample major elements for all twenty-
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six possible shifts in the three process means. In other words, these sample major 

elements can only display whether the possible shifts are in any one, two or all three 

variables, but can not reveal the specific nature of each of the 26 shift combinations. For 

instance, shift combinations #2 , #8, #20  and #26 all have the same expected out-of-control 

pattern, although each of which involves a different kind, of upward and downward 

shifts in the means of X x and X 2.

(a)

Correlation Matix(|p =0.21) CT, A, Cov-Variance Matrix (|S| =0.6

1 0.75 0.7 1.6 1.6 2.560 1.440 1.008

p = 0.75 1 0.65 1.2 1.2 1.440 1.440 0.702
0.7 0.65 1 0.9 0.9 1.008 0.702 0.810

2.78 -1.42 -1.02 1.09 -0.74 -0.71

p*' = -1.42 2.46 -0.60 £-> - -0.74 1.71 -0.56
-1.02 -0.60 2.11 -0.71 -0.56 2.60

( b )

1 2  2 *  6  €  7  »  » 10  1 1  1 2  1 3  1 4  11  1 «  1 7  1 1  1 t  2 0  21  2 2  2 3  2 4  2 6  2 1  2 7

Major Elements
■  M i l  :.‘ M 22  Q M 2 3

i D - . D ^  ^ _ i l ! . L i ;

Figure 3.1 Process Information and Major Element Plots

When the plots of the three sample major elements are supplemented with the 

sample minor element plots, together they would be capable of displaying thirteen 

distinguishable patters. For example, with the help of sample minor elements, 

combinations #2 and #8 would have different expected patterns. So would have 

combinations #20 and #26. But the expected pattern of (#2, #26) would be still the same, 

and so would be (#8, #20). It would be a great improvement in chart interpretation if 

plots of sample minor elements were also employed in addition to the major elements.
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That, however, would be achieved at the extra and added complexity expense. An 

alternative approach that utilizes only the major element charts presented in the next 

section has been tried with good results.

3.5.4 Detecting the Direction of Shifts in the Means

As discussed earlier, the sample major element plots can not reveal the specific 

nature of each and every combination of shifts in the means. In order to achieve such a 

capability, the following modification of the sample major element calculations is 

proposed to produce all the twenty-six expected patterns one for each specific 

combination of shifts in the three process means.

Let An = X u —X, and compute . - for each sample i so that the sample major
|A 'V|

element now carries a “sign” clearly indicating the direction of the observed sample 

deviation. Each signed or directional sample major element when deviating a great deal 

from their expected value is more likely a reflection of the direction of the shift, up or 

down. Furthermore, the expected value, E(M u) ,l  =1,2,3, of the modified sample 

element will indicate the sign of the underlying shift. These modified sample major 

elements, denoted by M 'u , are defined as follows.

M'u =
Mjji, Ajj & 0.

, I = 1,2 (3.32)

> A,7  = 0
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Figure 3.2 is a plot of the expected patterns, E(M'ij ) ’s, corresponding to each of

the twenty-six combinations of shifts in the means of the same example trivariate process 

discussed in the last section. The direction of each is clearly displayed by the

stacked bars in Figure 3.2. The twenty-six distinctly unique patterns are clearly 

identifiable for each specific combination of the shifts.

A table of out-of-control patterns such as the one shown in Figure 3.2 will be 

very helpful in practice for diagnostic analysis of multivariate control charts.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
hi 0 0 0 0 0 0 0 0 0 + + + + + + + + +
hZ - - - 0 0 0 + + + - - - 0 0 0 + + + - - - 0 0 0 + + +
h3 - 0 + - 0 + - 0 + - 0 + - 0 + - 0 + - 0 + - 0 + - 0 +

ttjcrBemot

-10  -

Figure 3.2 Modified Major Element Plots (A/';)

It is noted that by adding the “sign”, indicating the direction of a shift, each of the 

p major element control charts can be analyzed individually, one for each variable. Such 

makes the analysis of a multivariate process control very simple and easy.
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3.5.5 Control Limits for Major Elements

It was shown in Section 3.4 that the sample major element is distributed as a 

function of a chi-square variable having one degree of freedom. For control chart 

construction, the upper and lower control limits of the sample major elements may be 

set at a significance level a  as follows:

U C L ,_ ^o fM iJt =

LCLjj/j o f M iJt —

(Ml 1 >—
*

IwJK nk )

r w i f y t - n

I w J I  nk J

X l , l - a / 2

X|,a/2 ~ 0

(3.33)

In the application of the major element control charts, the lower control limit  of 

each of the major element charts may be set to zero for simplicity. The reason for this is 

that any shift in the mean will lead to a big increase in the sample major element, while 

the magnitude of LCL becomes relative very small. The sample major elements, 

however, are sensitive not only to shifts in the process means but also to changes in the 

variance-covariance matrix. It is therefore a prerequisite that the variances and 

covariances of the process are in statistical control before meaningful analysis of the 

major element control charts can be conducted

When control charts are to be constructed for the modified sample major 

elements, both upper and lower control limits must be calculated. Since the modifier, 

A;i j , can only be either + 1  o r -1, the upper and lower control limits will have the same

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

45

absolute value. With negligible error, it is recommended to set the center line at zero 

such that one two-sided control chart is used for each sample major element with 

symmetrical control limits as follows:

UCL =
\  i i  y 

CX = 0

LCL = -

' X I V * - ! '
|if| jl, nk X l , l - a / 2

pfc-n
I w J I nk  J5Cl,I-ot/2

(3.34)

3.5.6 Expected Direction Pattern for p-variate Process

For a general p-variate process with p > 3, each shift combination of the p 

variables is also expected to exhibit a unique directional pattern. Since each variable of a 

p-variate process can only be in one of the three states: shifts upward, downward or no 

shift, there are 3M types of shift combinations. For example, a four-variate process has 

81 states with 80 unique out-of-control patterns to be expected for the sample major 

elements. Such unique out-of-control patterns of a 4-variate process are displayed in 

Figure 3.3.

The number of the shift combinations will increase drastically even for 

moderately large p  vales such as five or six. Theoretically, it seems that no matter how 

many variables are being controlled, changes in the process means can be identified by 

similar charts with upward and downward stack bars. However, as p increases, it will 

become more difficult to read a large number of sample major element charts with 

reference stack-bar charts.
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C h a p t e r  4

M a j o r  E l e m e n t  C o n t r o l  C h a r t s  B y  S i m u l a t i o n

The methodology of Chapter 3 is developed for the control of the means of a 

multivariate Gaussian process. It was shown that the sample p  major elements could be 

analyzed individually for statistical signals of possible upward or downward shifts in each 

of the process means. This chapter demonstrates how these major element control charts 

are applied, using simulated sample data of a number of trivariate processes with, different 

process means and covariance matrices. In the estimation of the process parameters 

needed for initial chart constructions, the sample size effect on estimation errors is 

discussed with simulated demonstrations. The programs that were employed for data 

simulation are written in SAS IML language and executed on UNIX computers. They 

are listed in Appendix I.

This chapter begins with a description of the algorithm for computer simulation 

of a trivariate normal process in section 4.1. Section 4.2 presents the design of various 

sets of parameter and shift combinations for the simulations to exhibit the out-of-control 

patterns of sample major elements. In Section 4.3, a step-by-step computation and 

charting procedure of the three major element control charts is discussed. An example of 

a simulated trivariate process is described with illustrations in Section 4 .4 . The 

estimation of process parameters for control limit calculations and the distributional
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patterns of the directional major element control charts are discussed in Section 4.5. 

Some results on the sample size effects on parameter estimation and on the general 

effectiveness of the proposed major element control charts are given in Section 4.6 and 

some summarized results in the final section.

4.1 Simulation of A  Trivariate Normal Process

Consider a trivariate normal process characterized by a random vector 

x = [ x l t x 2, x 3Y  with a mean vector p., a variance-covariance matrix £  and a 

correlation matrix p as

P  =

1 P l 2  P l 3

P l 2  1 P 2 3

P l 3  P 2 3  1

4.1.1 Input Process Parameters

The simulation of a p-variate normal process requires certain process parameters 

as input data. The specific parameter inputs are determined according to the method or 

algorithm selected for simulation. The method of Cholesky’s Factorization, which 

decomposes the process variance-covariance matrix, £, was employed for data simulation

in this research. Similar to Eq. 3.12, the method uses the expression, £  = v ^ p v ^ , where
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v1/2 =
mi 0

0 0
0

33

As a result, the input parameters required for simulating a trivariate normal 

process include the means (ju,, (J.2, fj.3), the standard deviations (c^, cr2, cr3) and the

correlations (Pi2>P 13̂ 23) •

4.1.2 Cholesky Decomposition of Variance-Covariance M atrix

Since the variance-covariance matrix E is positive definite, there exists a unique 

lower triangular matrix L (/̂  = 0, i < j ) with positive diagonal elements such that 

(Anderson, 1984)

Z = LLr . (4.1)

The first step of the Cholesky simulation is to generate a data matrix Y of three

correlatedd normal vectors with variance-covariance matrix E and 0 mean vector,

Y = ZL , (4.2)

where

Z = [z , , Z2, Z3

is an (a x 3) matrix of three vectors of an independent, standardized normal 

deviates, N(0, / )  where I is an identity matrix of order 3. So
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Y~iV(0,Z). (4.3)

Then , the simulated sample data of size a of the trivariate X is obtained by

X = |i + Y = p + ZL. (4.4)

4.2 Simulation Design of Mean Shifts

A design of the simulation runs is described in detail in this section. In order to 

demonstrate that certain distributional patterns of the sample major elements do exist 

while the process means are shifted, shifts of different sizes and directions were simulated 

for the analysis. Simulated data sets were also generated from different processes of 

various process means, standard deviations and correlation structures. Results from these 

various simulated data allow for the evaluation of the performance effectiveness of the 

major element control charts.

Each of the three process means may be in one of three states, (-, 0, +) which 

denote respectively “a downward shift”, “no shifts”, and “ an upward shift”. There are a 

total of 33 = 27 possible states of the process at any time, as shown in Table 4.1. Four 

different sizes of the shifts, 0.25a, 0.5a, 1.0a and 1.5a, in the process means were 

simulated to observe their effects on the distributional patterns of sample major elements 

on each of the three control charts. Table 4.1 lists all the 27 states under each of the 4 

sizes of shift, where h, and 8{ denote the direction and size of a shift in the mean of 

variable /.
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In order to ascertain the possible effects on the sample distribution patterns of the 

major elements due to various types and degrees of correlation among the three variables, 

a total of ten different correlation matrices were used in data generation. Five of which, 

with various degrees of correlation, were simulated for all positive correlations and 

another five for cases with two negative correlations. Table 4.2 summarizes the 

parameter values for all the simulation runs of the base data when the process is in 

control.

Table 4.1 Simulated Shifts among the Three Variables

Shifts h 36 3 CT3
1 -0 .2 5 a , -0 .5 a , - 1 .0 a , - 1 .5 a , -0 .2 5 a , -0 .5  a , - 1 .0 a , - l ^ O j -0 .2 5 a 31-0 .5a3 1 -I.O C 3 | -1 .5 o j
2 -0 .2 5 a , -0 .5 a , - 1.0 a , - 1 .5 a , -0 .2 5 a , -0 .5 a3 - 1 .0 a , - 1 .502 U
3 -0 .2 5 a , -0 .5 a , - 1 .0 a , - 1 .5 a , -0 .2 5 a , -0 .5  a , - 1.0  a , —1.5 a , + 0 .2 5 as +0.5a3 + 1.003 + 1.503

4 -0 .2 5 a , -0 .5 a , - 1 .0 a , - l - 5 a , -0 .2 5 a j -0 .5 a 3 - 1.003 -1 .5 a 3

5 -0 .2 5 a , -0 .5 a , - 1.0 a , - l - 5 a . U U

6 -0 .2 5 a , -0 .5 a , - 1.0 a , - 1 .5 a , ■ 0 + 0 .2 5 a3 +0.5a3 + 1.003 + 1 ^ 0 3

7 -0 .2 5 a , -0 .5 a , - 1 .0 a, - 1 .5 a , +0.2503 +0.5 a . + 1 .0 a 3 + 1 .5 a -0 .2 5 a 3 -0 .5 a 3 - 1.0 a 3 - I .503

8 -0 .2 5 a , -0 .5 a , - ! . 0 a , - 1 .5 a , +0.25a. + 0 .5 a . +I.O 03 + I.5 a , U
9 -0 .2 5 a , -0 .5 a , - 1.0 a, - 1 .5 a , +0.2503 + 0.5a . +  1 .0 O2 +1.503 + 0 .2 5 a3 +0.5a3 + 1.005 +1.5a3
10 -0 .2 5 a , -0 .5O ; - 1.0 a , - 1 . 5 a -0 .2 5 a s -0 .5 a 3 - 1.003 - I . 5 a 3

11 u -0 .2 5 a , -0 .5 o i - 1 .0 a , -1.502 U

12 U -0 .2 5 a , - 0 .5 0 3 - l .O a i - 1 .5 a , + 0 .25 o3 +0.5a3 + 1.003 + I .5 a 3

13 0 -0 .2 5 a 3 -0 .5 a 3 - 1.0 a , -I-SO j

14 U U U

15 U U + 0 .2 5 a3 +0.5a3 + I .0 a 3 + 1 5 1 ,
16 U +0.25O, + 0 .5 0 3 + 1.003 +1.5o2 -0 .2 5 a 3 -0 .5 a 3 - I .O 03 - l . 5 a 3

17 0 +0.2503 +O.503 + 1 .0 a + 1 .5 a U

18 0 +0.25a. + 0 .5a . +I.O 02 +1.502 + 0 .2 5 a3 +0.5a3 + 1.003 + 1.5a3

19 +0.25a, +0.5a, + 1.0 a, + 1.5 a , -0 .2 5 a , -0 .5  a , - 1.0 a , -1  _5a. -0 .2 5 a 3 - 0.503 —1.003 - l . 5 a 3

20 +0.25a, +0.5a. + 1 .0 a , + 1 .5 a , -0 .2 5 a , -0 .5 a , -l.O O ; - 1 .5a, U
21 +0.25a, +0.5a, + l .0 a , + I .5 a , -0 .2 5 a , - 0 .5 a , - I .O 02 -1 .5  a , +02>Sa3 +0.5 a 3 + 1.003 + 1 .5 a ,
22 +0.25a, +0.5a, + 1.0 a . +1 -5a, I -0 .2 5 a 3 -0 .5 a 3 - l .O a j - I .503

23 +0.25O, +0.5a. + 1.0 a , + 1 .5 a , 0 U
24 +0.25a, +0.5a, + 1.0 a, + 1 .5a , ' 0  " + 0 .2 5 a3 +0.5a3 + I.O03 + 1 ^
25 +0.25a. +0.5a, + 1.0 a. + 1 .5a , +0.25a . +0.5Oi +  1.0 a . +1.5a . -0 .2 5 a 3 -0 .5 a 3 - 1.003 — 1 .5cfj

26 + 0.25a, +0.5a. + 1.0 a. + 1 .5 a , +0.25a. +0.5Oi + 1 .0 a . + 1 .5 a U
27 + 0.25a, +0.5a, + 1 .0 a, + I .5 a , +0.25a. + 0 .5 a . +I.O 03 + 1.503 + 0 .2 5 a3|+ 0 .5 a3 | + 1 .0a3 | + l .5 a 3
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The order of a simulation run is denoted by a 2- or 3-digit ‘run no’ as listed in 

Table 4.2. It is noted that the even numbers, Rim 00 to Run 100, indicate those runs 

with all positive correlations, while the odd numbers, Run 01 to Run 101, with two 

negative and one positive correlations. In addition, each simulation run contains four 

different sets of sample data, one for each of the four shift sizes in the means.

Table 4. 2 Summary of the Parameters Used in Simulation

E(X) Standard Deviation Simultion
All Positive Correlition 

Coefficient
Simultion

Too Negative and One 
Positive Correlation 

Coefficient

X, x2 x3 s, S3 S3 Run No. < 1 2 ru rsj Run No. Tt2 ria Taa

3 15 9 1.6 1.2 0.9

00 0.7 0.9 0.6 01 -0.7 0.9 -0.6

10 0.2 0.1 0.15 11 -0.2 0.1 -0.15
20 0.3 0.8 0.35 21 -0.3 0.8 -0.35

30 0.85 0.4 0.8 31 -0.85 0.4 -0.8

40 0.95 0.9 0.875 41 -0.95 0.9 -0.875

3 15 9 0.06 0.012 0.09
50 0.7 0.9 0.6 51 -0.7 0.9 -0.6

60 0.2 0.1 0.15 61 -0.2 0.1 -0.15

0.5 0.65 0.25 1.6 1.2 0.9
70 0.7 0.9 0.6 71 -0.7 0.9 -0.6
80 0.2 0.1 0.15 81 -0.2 0.1 -0.15

0.5 0.65 0.25 0.06 0.012 0.09
90 0.7 0.9 0.6 91 -0.7 0.9 -0.6

100 0.2 0.1 0.15 101 -0.2 0.1 -0.15

Another twelve more runs were also simulated for relatively very small values for 

the process means and standard deviations using the correlation structures in Run 00 & 

01 and Run 10 & 11.

For each simulation run, the computer generated 13500 of 3x1 vectors. Every set 

of ten vectors was taken as one sample. There are 50 samples for each shift combination. 

The sequence of samples from sample no.651 to no.700 (shift no. 14 in Table 4.1) of each 

run represents the in-control state without shifts. These in-control data were used to 

calculate the sample means, the sample standard deviations, the sample correlation
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matrix, and the sample variance-covariance matrix. These sample statistics were used to 

construct the major element control charts.

All the simulated sample data including input process parameters are documented 

in Appendix II.

4.3 Setting-Up Major Element Control Charts

Upon completion of each simulation of an input process, the simulated sample 

data is used to calculate the sample major elements and the control limits for each chart. 

A step-by-step procedure for the construction of the major element control charts will be 

explained in this section. In addition, programs for all the computations were written in 

SAS M L  and are listed in Appendix I.

According to the methods described in Chapter 3, the following is a step-by-step 

procedure for the construction of the major element control charts.

1. For each sample of n simulated observations, the sample means and sample 

variances and covariances are calculated.

n

T xuj
M

n

(4.5)
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where x .j  is the /** observation, j = 1,2,..,n, in the Ith sample of variable I and

•thS iJm is the z sample covariance of variables I and m. W hen I = m, S ijl is the i 

sample variance of variable I . The sample variance-covariance matrix can be

written as

s,=
S i,l 1 ^1,12 3 f,13

5 1.12 S i, 22 S i.23

5 1.13 S i,23 S i.33

(4.6)

where k is the number of samples.

2. The grand sample mean, X , and variance-covariance matrix, S, are respectively 

the arithmetic average of all the k sample means and k  sample variances and 

covariances.

(=1
Jm

3x3

(4.7)

3. The inverted sample variance-covariance matrix (S'1) is then calculated.

S'1 =kk-> =
PxP

(4.8)

where is the matrix obtained from S  by deleting row and mlh column and 

“ I I” is the determinant of a matrix.
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4. The sample major element of each variable I is calculated as follows:

5. The directional sample major element with X tJ — X ,  = A,, may be calculated by

M'tJ =
a „ * oI A I • »**|A-v| • (4-9)

0 ,A(, = 0

Ir  I
6. The value of y - y  is calculated for each process variable, where the value of Rff is

R

the matrix obtained from the sample correlation matrix R  by deleting Fh row and 

P  column, I = 1, 2,

7. The control limits and centerlines for the major element control charts are 

obtained by Eq. 3.34 as follows.

1*1
UCL, = 

CLt =0
VI I /

( k - i
\  nk j X l . l - o / 2

LCLt = -
r \ R n ^ ( k - i

nk j

where k  is the number of samples, and n is the sample size.
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4.4 A Simulated Trivariate Process - Run 00

A simulation run is a set of 1,350 simulated samples of size 10 with each 50 

samples generated under one of the 27 states of a trivariate process including an in

control state. Each of the other 26 states is an out-of-control state having a particular 

combination of the shifts in the three means. In this section, the construction and 

interpretation of the major element control charts for a trivariate process will be 

illustrated using the simulated data Run 00, where the shift is one standard deviation in 

size. The control limits, based on the 50 simulated samples of size 10 (Data Nos. 651 to 

700) while all three means are in control, are calculated at a significance level 

cc/2 =0.00275 for chart analysis. The input parameters for generating the data of run 00 

are given in Table 4.3.

Table 4. 3 Simulation Input Parameters for Run 00

F Std.D ev. Correlation
X, 3 1.6 1 0.7 0.9
x 2 15 1.2 0.7 1 0.6
X3 9 0.9 0.9 0.6 1

Run 00 data are simulated for a process with relatively high correlations among the three 

variables. All relevant sample statistics calculated from the in-control data (Parameter 

estimates and sample statistics) are given in Tables 4.4 and 4.5.
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Table 4. 4 In-Control Process Statistics of Run 00

Run 00

x , S/ R S S"
Xi 3.028 1.662 1 0.709 0.910 2.761 1.415 1.448 2.791 0.853 -3.803
*2 15.038 1.200 0.709 1 0.626 1.415 1.440 0.720 0.853 1.402 0.209
X3 9.035 0.958 0.910 0.626 1 1.448 0.720 0.917 -3.803 0.209 7.213

The following are the control limits at a /2  =0.275% for the three control charts. From

Table 4.4,

\R\ =0.08512; |i?u | =0.6081; 1^1=0.1719; |£ 331 = 0.4973 .

With n=  10, k=50 and Zu-ons% = 8.9665, the control limits and centerline are:

UCL = 0.6081
0.08512

5 0-1
10x50

(8.9665) = 6.2777; CLX =0; LCL, =-6.2777

UCL, =
(  0.1719  ̂

0.08512
f - ^ —?-1(8.9665)= 1.7745; CL, =0 \LCL, =-1.7745 
Vl0x50/

UCL, = ' 0.4973  ̂
0.08512

(  50-1   ̂
10x50

(8.9665)=5.1398;CZ3 =0 \LCL, =-5.1398

The sample major elements and their corresponding control charts are plotted as 

shown in Figure 4.1. All three major element charts show the process in good statistical 

control. Five sets of 10 samples, each with one kind of shift combinations, are listed in 

Table 4.6 and plotted on the control charts as shown in Figure 4.2.
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Table 4.5 50 Simulated Samples of A Process In-Control

Subgroup
w

M '. M ' iX

1 3.049 15.179 8.951 0.001 0.028 -0.051
2 2.980 15.129 8.832 -0.006 0.012 -0796
3 1.998 14.678 8.335 -2.963 -0.182 -3.529
4 3.164 15.466 9.054 0.052 0756 0.003
5 2.772 14.866 8.828 -0.182 -0.041 -0.309
6 3.376 15.619 9.112 0.337 0.473 0.042
7 2.741 14.975 9.000 -0.231 -0.006 -0.009
8 2.493 14.904 8.894 -0.799 -0.025 -0.143
9 3.017 14.881 8.928 0.000 -0.034 -0.083
10 2.570 14.862 8.632 -0.585 -0.043 -1.171
11 3.309 15.514 9.066 0.220 0.318 0.007
12 2.245 14.426 8.877 -1709 -0.525 -0.180
13 3.502 15.008 9.257 0.628 -0.001 0.354
14 2.631 14.984 8.915 -0.440 -0.004 -0.103
15 3.038 15.641 8.868 0.000 0.509 -0700
16 2.965 14.959 9.243 -0.011 -0.009 0.312
17 2.490 14.842 8.887 -0.809 -0.054 -0.157
18 3.416 15.113 8.951 0.421 0.008 -0.051
19 2.407 14.438 8.801 -1.075 -0.505 -0795
20 3.758 15.382 9.401 1.487 0.165 0.968
21 2.955 15.013 9.130 -0.015 -0.001 0.066
22 4.100 15.829 9.536 3.204 0.877 1.807
23 3.004 14.779 8.898 -0.002 -0.094 -0.135
24 2.753 14.815 8.870 -0.211 -0.070 -0.197
25 3.592 15.587 9.350 0.889 0.423 0.715
26 3.009 14.666 8.875 -0.001 -0.194 -0.186
27 2.863 14.722 8.886 -0.076 -0.140 -0.160
28 3.985 15.558 9.607 1556 0.380 2.360
29 2.285 14.750 8.639 -1.542 -0.116 -1.129
30 3.857 15.695 9.586 1.918 0.605 2.188
31 3.170 15.058 9.072 0.056 0.001 0.010
32 3.275 15.014 8.967 0.170 -0.001 -0.033
33 2.313 15.038 8.747 -1.425 0.000 -0.599
34 2.393 14.736 8.830 -1.124 -0.127 -0.303
35 3.433 15.536 9.171 0.458 0.348 0.133
36 2.405 14.692 8.919 -1.082 -0.167 -0.097
37 3.787 15.303 9.451 1.609 0.099 1.248
38 3.986 14.913 9.367 2.561 -0.022 0.793
39 3.178 14.874 9.281 0.063 -0.038 0.436
40 2.197 15.314 8.505 -1.929 0.107 -2.029
41 3.533 15.134 9.254 0.711 0.013 0.347
42 2.220 14.415 8.697 -1.823 -0.544 -0.823
43 2.973 14.749 8.976 -0.008 -0.117 -0.026
44 3.584 15.463 9.418 0.862 0.253 1.061
45 3.101 14.900 9.251 0.015 -0.027 0.338
46 3.220 14.535 9.135 0.103 -0.354 0.072
47 3.084 15.237 9.316 0.009 0.056 0.570
48 2.903 15.180 • 8.894 -0.043 0.028 -0.143
49 3.167 14.918 9.190 0.054 -0.020 0.172
50 3.164 14.605 9.102 0.052 -0.263 0.033
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Figure 4.1 Control Charts of the 50 Sample Major Elements in 
Table 4.5.
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Table 4.6 Samples of Five Different Shift Combinations

Subgroup
(0

X,* K l K l

51 1.692 13.805 8.461 -4.978 -2.132 -2374
52 0.579 13.518 7.714 -16.745 -3.241 -12.590
53 0352 13.067 7.460 -19.982 -5.445 -17.894
54 0.973 13.600 8.088 -11388 -2.900 -6.469
55 1.588 14.056 8.139 -5.784 -1.351 -5.789
56 0.749 13.816 7.482 -14.496 -2.093 -17.404
57 1.933 13.757 8312 -3.345 -2399 -3.766
58 1392 13.972 7.989 -8.410 -1.594 -7.896
59 1.410 14.044 8.188 -7308 -1.386 -5.173
60 1.625 13.933 8.188 -5.491 -1.713 -5.172
61 0.957 15368 9.705 -11.972 0.074 3336
62 0.921 14.797 9.531 -12390 -0.082 1.774
63 1.401 14.761 10.022 -7391 -0.108 7.020
64 1.020 14.784 9.720 -11350 -0.091 3388
65 1.739 15.598 9.996 -4.635 0.440 6.656
66 1.853 14.916 10.106 -3.853 -0.021 8370
67 2.106 15.845 10.440 -2371 0.912 14.231
68 1.737 15389 10.127 -4.651 0.088 8.603
69 1.635 15.230 9.840 -5.413 0.052 4.670
70 1.482 15.123 9.846 -6.673 0.010 4.740
71 2.958 13.948 8.060 -0.014 -1.666 -6.857
72 2.317 13305 7.459 -1.411 -4.712 -17.923
73 3300 13.939 8393 0.082 -1.694 -2.974
74 3.375 14.091 8.097 0.336 -1358 -6353
75 3.537 13.923 8.431 0.724 -1.742 -2.627
76 2302 13.417 7.640 -1.469 -3.684 -14.034
77 3372 13.669 8.320 0.166 -2.627 -3.686
78 2.827 13.569 8.147 -0.113 -3.024 -5.690
79 3.142 13.745 8.417 0.036 -2343 -2.753
80 3.715 13.696 8.729 1318 -2.526 -0.675
81 4.342 16.436 8.746 4.817 2.739 -0.602
82 4.821 15.760 9.119 8.974 0.730 0.051
83 3.942 15.511 8.605 2333 0313 -1336
84 3.727 15.746 8.450 1365 0.702 -2.469
85 4.452 16.074 9.044 5.662 1.504 0.001
86 5.509 16.421 9329 17.186 2.683 0.272
87 4.213 16394 8.896 3.918 2312 -0.140
88 4.581 16.471 9.109 6.732 2.880 0.039
89 4.544 15.854 9.285 6.414 0.933 0.449
90 5.342 16.161 9.310 14.950 1.769 0.546
91 4358 13.867 9.611 4.940 -1.923 2.396
92 4.805 14.014 10.093 8.810 -1.470 8.074
93 5.119 13.679 10.031 12.206 -2.588 7.159
94 4.577 13.601 9.920 6.698 -2.896 5.643
95 4.903 13.605 9.980 9.817 -2.877 6.439
96 4.317 13.387 9.799 4.636 -3.821 4.212
97 4.856 13.286 10.006 9.326 4302 6.807
98 4.232 13.539 9.614 4.048 -3.148 2.418
99 4.438 14.053 9.890 5.551 -1361 5.269
100 4.782 14.651 10.119 8.582 •0.210 8.469
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Figure 4.2 Continuation of the Major Element Control Charts 
for Samples 51 to 100
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The 50 sample major elements of Figure 4.2 clearly show 5 different out-of

control patterns, one for each kind of shifts in the means. These are summarized in 

Table 4.7.

Table 4.7 Shift Patterns of Samples 51 to 100

Variable Sample No. 
51-60

Sample No. 
61-70

Sample No. 
71-80

Sample No. 
81-90

Sample No. 
91 -100

x , Downward Downward No shift Upward Upward
X, Downward No Shift Downward Upward Downward
X, Downward Upward Downward No shift Upward

4.5 Evaluation of the Major Element Control Charts

For a control chart to be effective in general applications, it should have a high 

degree of sensitivity to detea small shifts in the process parameter^) being monitored. 

In the case of univariate controls, the deteaion sensitivity depends simply on the amount 

of common-cause variability in the process. With multivariate controls, however, the 

faaors that can affect such senstivity are many and become rather complex. The process 

parameters such as the means and variances of a p-variate process may have widely 

different values among the p variables. Furthermore, the p!/2!(p-2)! pair-wise 

correlations may differ a great deal from one another.

For the purpose of evaluating the effeaiveness of the proposed major element 

control charts, a total of 22 simulation runs were generated each with a different set of 

parameter values, correlations, and sizes of the shifts. Details o f the input process
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parameters and simulated results including all the control charts for sample major 

elements are listed under each run number in Appendix IE.

All the 22 sets of major element control charts in Appendix III are constructed by 

the parameter estimates using only the data simulated for a trivariate process in control. 

The various out-of-control patterns exhibited on these charts are summarized below in 

terms of the effects of process parameter values, shift sizes and correlation structures.

4.5.1 Effects of Correlation Structures

The control charts for sample major elements of a trivariate process in Appendix 

IH are arranged in the order of simulation runs. For each simulation run, there are four 

sets of three control charts of sample major elements generated according to four 

different sizes of shift in the means. The control charts are numbered by IH-a.b, where a 

is the Run # and b denotes either one of the two types of correlations. As shown in 

Table 4.2, there are 11 runs under each type of the correlations. Since the first 10 runs 

(00, 01, 10, 11, 20, 21, 30, 31, 40 and 41) are samples generated from a process with 

various correlation structures all having a same set of means and variances, the 

corresponding control charts for these samples should reveal the correlation effects, if 

any, on the distributional patterns of out-of-control.

A careful examination of this group of 120 major element control charts does not 

seem to show any noticeable variations in the out-of-control patterns of the sample major
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Ir  I
elements under different correlation structure. Due to the fact that the value of -rAr

|r |

varies greatly under different R, however, the numerical scales of the major element 

control charts vary a great deal with different correlation structures.

4.5.2 Effects of Process Means and Process Standard Deviations

In order to find any possible effects on the out-of-control sample patterns due to 

varying magnitudes of process means and variances, three different sets of means and 

variances were simulated each under four representative correlation structures (high and 

low positive correlations, and high and low negative correlations.) These are identified as 

Runs 50, 51, 60, 61, 70, 71 80, 81, 90, 91,100 and 101. Together with the one in the first 

group having the same correlations (Runs 00, 01, 10 or 11,) any deviations in the out-of

control sample patterns among the four different means and/or variances may be 

examined. As shown by the simulated control charts of Appendix III, there are no 

apparent changes in the sample patterns when either or both the process means and 

variances vary. Also, between the two correlation structures which produce very 

different scales for the major element control charts, the pair-wise sample patterns of the 

four sets of process means and/or variances are not distinguishable.

The above analysis through selected simulation data, although limited, seems to 

show the robustness of the proposed major element control charts in their capability of 

signaling the root cause(s) of a trivariate process out-of-control.
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4.5.3 Effects of The Size of Mean Shifts

Although the patterns of all simulation runs do not seem to change while the 

process parameters are varied, the size of the shifts in the means does appear to have an 

effect in the degree of clarity of the out-of-control patterns under all different process 

correlations and parameters. Among the four different shift sizes (0.25a to 1.5cr) that 

were simulated, it is obvious that the identification of the sample patterns under various 

shift combinations become less clear when the size of the shift is as small as 0.25a. Since a 

chart’s sensitivity in detecting shifts of a certain size increases as the variance of the 

sample mean decreases, an increased sample size will improve the sensitivity in the 

detection of very small shifts.

4.6 Deciding O n Sample Sizes and Sampling Frequency

Routine operations of control charts often are constrained by time and costs of 

sampling. Moreover, smaller samples are more likely to produce the information about 

one and only one state of the process, whether it be in control or out of control. 

Therefore, it is desirable to take small samples for process control in practice. Then the 

question is how small should a sample be to satisfy a reasonable degree of confidence in 

statistical estimation.

Another concern in sampling design is to determine the frequency of sampling. 

Samples should be taken more frequently if the process is subject to frequent occurrences 

of assignable causes and/or critical consequences of delayed detection of those causes.
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Economically! both the sample size and sampling frequency must be considered together. 

These practical issues are not discussed further as they are beyond the scope of this 

research. It is important, however, to analyze the effects of sample size and the number 

of samples on the statistical properties of the proposed major element control charts 

during their initial construction. While it is recognized that no exact solutions can be 

expected, a simulation experiment on a trivariate normal process is presented in this 

section to help illustrate the effects on chart construction and interpretation by varying 

the sampling plans. For initial construction of the control charts, the errors between the 

calculated control limits and their corresponding true values, called bias, are evaluated to 

provide some basis for the design of sampling plans. The computation program of this 

simulation experiment is documented in Appendix II.

4.6.1 Estimation Errors of Various Sampling Plans

The total amount of sample data to be used for initial chart construction is the 

product of the number of samples k and the sample size n. In order to evaluate their 

effects on the estimation errors of the control limits, the following simulation 

experiment was conducted.

A trivariate process is characterized by a total of nine parameters that include 

three means, three variances, and three covariances, the sample size required for their 

estimations must be greater than 3 and preferably greater than 9. In this experiment, the 

simulated data of nine different numbers of samples (k=25, 35, 50, 75,100, 250, 500, 750 

and 1000) and four sample sizes (n=6, 8, 10, and 15) were chosen for the analysis.
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Increasing either the sample size or the number of samples should increase the accuracy 

of the estimates. It was expected, however, the effects of k  m ay behave differently from 

those of n.

A full size simulation, consisting of all possible combinations of these two factors, 

k  and n, was conducted at each of the five correlation structures with the same process 

means and standard deviations as shown in Table 4.8.

Table 4. 8 Process Parameters of the Simulation Experiment for 
the Study of the Effects of Sample Size and Number of 
Samples

Simultion E(X) Standard Deviation Correlation Coefficient

Run No. Xi x 2 x 3 Si S3 Pu P l3 P23

110

3 15 9 1.6 1.2 0.9

0.7 0.9 0.6
120 0.2 0.1 0.15
130 0.3 0.8 0.35
140 0.85 0.4 0.8
150 0.95 0.9 0.875

Twenty-five simulated replications of each run with each sampling plan (k, n) 

were generated. The sample statistics, calculated from each simulated replicate, were 

used as estimates of their corresponding process parameters for control limit calculations. 

All upper control limits have a significance a=0.01. Thus, there are 25 estimates of a 

control limit for each run w ith one sampling plan. Since the lower control limit of a 

major element control chart is obtained by multiplying the upper control limit by -1, 

only the upper control limits are evaluated in all cases. Corresponding to each set of the 

25 estimated or simulated control limit UCLa-m, a true control limit, UCLtruc, is
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computed according to the process parameters that were used as inputs to generate the 

replicated data. As a measure of the estimation error of each U C L ^,, the following is 

defined for subsequent analysis.

IUCLtne -  UCL,im I 
= ------—---------— x 100% , Rep = 1, 2,..., 25.

RepV UCLlne F

The mean, standard deviation, and range of the 25 BiasRep,(%) of each simulation 

were calculated and given in Appendix IV. Figure 4.3 and Figure 4.4 summarize the 

results by plots of the percentage of bias for each of the three major element charts, 

grouped respectively by sample size (n) and by the number of samples (k). Each plot also 

contains five lines, each of which represents the changing behavior of the average 

BiasRcp,(%) of a correlation structure.

4.6.2 Effects of th e  Sample Size (n)

As can be seen from the plots of Figures 4.3, increasing sample size tend to 

increase the accuracy (smaller Bias) of the control limit estimates. When the sample size 

is equal to 6, the accuracy gradually improves as the number of samples is increased. 

However, the rate of improvement varies quite a lot among the different structures of 

correlation. For sample sizes of 8 and 10, the rates of improvement are very comparable 

and less influenced by the correlations. In most cases, the percentage of bias is reduced to 

less than 2% with 50 samples or more. When the sample size is increased to 15, even with 

very small number of samples at 25, the bias error is 3% or less. It is interesting to 

observe that the bias is uniformly small for data of Run 120 even with small k. This is
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the case where the three variables are only slightly correlated (p12 = 0.2, pu = 0.1, =

0.15). Thus, a much larger number of samples and/or large sample sizes are needed for 

more accurate control limit estimations when the variables are highly correlated.

4.6.3 Effect of the N um ber of Samples (k)

Comparing with the effects of sample sizes, the plots of Figure 4.4 show that the 

number of samples has relatively minimal effect on the estimation errors when it is 

greater than 50. In most cases, with relatively larger sample sizes, 35 samples may be 

sufficient for practical applications. However, even when 1000 samples are used to 

construct the control charts, the bias is still about 1% in most cases.
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4.7 Summary of Sim ulation Results

Through simulated sample data of a trivariate process with various parameters, 

this chapter has demonstrated the construction of the control charts for sample major 

elements for practical multivariate process control. More important, the analysis of 

many simulated control charts for sample major elements does confirm the existence of 

unique distributional patterns of all 26 types of out-of-control, as expected from the 

methodology developed in Chapter 3.

The similarity in the sample patterns of the wide range of simulation runs can be 

seen on all the major element control charts. However, for processes subject to very 

small shifts, e.g. 0.25(5, a much larger sample size, say 15, may be needed in order to 

improve the clarity of the sample distributional patterns for more speedy identification.

Overall, the major element control charts have been demonstrated to be effective 

in the detection of every possible combination of the shifts in means.

For most applications, it may be adequate to have about 50 samples of size 10 as 

initial data base to establish the three control charts for a trivariate process. When the 

number of correlated variables increases, a larger sample size and perhaps more samples 

are needed for adequate chart constructions. It is suggested that a preliminary simulation 

analysis similar to the ones described in this chapter may be conducted to find the 

appropriate sampling plan for each special situation. More on the questions about 

sample size and the number of samples will be discussed in Chapter 6.
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C o m p a r a t iv e  St u d y  o f  V a r io u s  C o n t r o l  C h a r t s

The control charts for sample major elements have been developed with the objective 

to improve the effectiveness and information content for statistical control of the means of a 

multivariate Gaussian process. It has been demonstrated in Chapters 3 and 4 that the 

proposed sample major elements are efficient, effective and informative statistics capable of 

representing or reflecting each and every one of the 3P—1 states of ap-variate normal process. 

It is, therefore, interesting to make some comparative analysis between the major element 

control charts and some of the other multivariate control charts developed in recent years. 

This chapter presents a summarized report on such a comparative study using simulated data.

As reviewed in Chapter 2, several alternative multivariate control charts have been 

introduced during this decade. Three of these control charts were selected for the 

comparative study. These are: the multivariate profile control charts (Fuch et al, 1994); the 

regression adjusted control charts (Hawkins, 1993); and the principal component control 

charts (Chang, 1991). Common to all of these control charts, including the major element 

control charts, is the idea of using independent sample statistics for charting. The methods 

that are employed for producing independent sample information of each variable, however, 

are quite different. The independent principal components are obtained by rotating a 

correlated p-dimensional space into p  orthogonal coordinates. The regression-adjusted 

variables are'the results of adjusting each of the p  variables for its associated covariates. The
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multivariate profile consists of p individual bar plots of the standardized normal deviates that 

are examined for out-of-controls only when the corresponding T 2 goes out of control. The 

sample major elements are only certain selected elements of a T 2 as discussed in Chapter 3. 

Since transformation and adjustment are likely to lose or alter some of the covariation in each 

sample, none of the above methods could be expected to be perfect for multivariate control. 

It is, therefore, their relative merits and shortcomings that are important to evaluate for 

applications. The following comparative analysis was conducted to do just that.

For this study, the simulated data sets of Run #00 and Run #10 with the process 

parameter values listed in Table 5.1 are used. As can be seen from Table 5.1, the two trivariate 

processes selected for the simulation study have very different correlation structures, high and 

low. These were selected for the purpose of ascertaining any correlation effects on the 

respective merits of each type of the control charts. According to each of the four methods, 

the required sample statistics were calculated and charted for comparison analysis. Each data 

set includes 26 combinations of shifts in the means. The control charts by each method are 

examined for (1) the uniqueness and clarity of out-of-control sample patterns and (2) the 

agreement (or departures) between the unique sample patterns, if exist, and the expected 

patterns from theory for each of the 26 possible out-of-control states.

Table 5.1 Process Parameters for Simulation Run 00 and Run 10

p* O/ R̂unOO R̂un 10
3 1.6 1 0.7 0.9 1 0.2 0.1
15 1.2 0.7 1 0.6 0.2 1 0.15
9 0.9 0.9 0.6 1 0.1 0.15 1
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This chapter is organized as follows. Section 5.1 summarizes the simulated data sets 

by the sample estimates of the process means, process standard deviations and covariances 

and process correlation coefficients. The computation, and plotting of the sample statistics

and control limits for the T 1 chart and for each type of the control charts are presented 

Section 5.2. The last section presents some of the important findings from the simulated

5.1 Summarized Information o f The Simulated Data

For the estimation of process parameters and the construction of control charts, it is 

essential to use only the data collected from a process in-control. As described earlier in 

Chapter 4, Case #14 of each simulation run represents the process in control. The 50 samples 

of size 10 in Case #14 of each simulation run are used as the initial database for the calculation 

of all needed parameter estimates. By Eqs. 4.5 to 4.7, the results are listed in Table 5.2 and 

Table 5.3 for Run #00 and Run #10 respectively.

Table 5.2 Estimated Process Parameters for Run 00

1 x, s, R S
1 3.03 1.49 1 0.65 0.89 2.22 1.16 1.14
2 15.01 1.20 0.65 1 0.53 1.16 1.43 0.55
3 8.99 0.86 0.89 0.53 1 1.14 0.55 0.75

Table 5.3 Estimated Process Parameters for Run 10

/ x, S/ R S
1 2.94 1.54 1 0.26 0.09 2.37 0.47 0.12
2 15.00 1.18 0.26 1 0.23 0.47 1.40 0.24
3 8.99 0.88 0.09 0.23 1 0.12 0.24 0.78
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5.2 Simulated Control Charts of Four Multivariate Methods

Since T2 control charts is of such a basic interest and importance and for use together 

with the multivariate profile charts, two T 2 control charts, one for each simulation run, are 

shown in Figure 5.1. In the remainder of this section, all the calculation of the sample 

statistics and control limits are presented for each of the four multivariate control methods. 

Accordingly, a set of three control charts following each of the four methods,

1. Multivariate Profile Control Charts

2. Principal Component Control Charts

3. Regression-Adjusted Control Charts

4. Major Element Control Charts

are plotted for each simulation run as shown in Figures 5.2, 5.3, 5,4 and 5.5.

5.2.1 T 2 Control Chart

To compute sample T 2 statistics, inverses of process variance-covariance matrices for 

Run #00 and Run #10 are obtained by using Eq. 3.9 and listed as:

's " s '2 s'3' '  2.67 -0 .8 4 -3.45"
c-' _
^  Run 00 — s'2 s 22 s 23 = -0 .8 4 1.24 0.37

s'3 s 23 s33 -3 .45 0.37 6.34
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"-0.67 0.39 -0 .52
O-l _
J  Run IQ ~ 0.39 -0 .85 -0 .10

-0 .40 0.34 -0 .85

With process means, X , and S 1 of both simulation runs, the T 2 value of each sample is 

computed by

r2=n(x-xf s~‘(x-x).

The upper control limits of Runs #00 and #10 at a  = 0.3% are:

U C L  =  £ ( i ± l K « - l )
f c n - k - p  + l a-"'bl-k-P+l

3(50+ !)(! 0 -1) 
5 0 x 1 0 -5 0 -3  + 1

= 14.481

0.3%, 3,448

Sample T 2 values and control limits for both simulation runs are plotted in Figure 5.1. 

From Figure 5.1, the sample T 2 statistics of both simulation runs have shown patterns for the 

twenty-six simulated out-of-control states. The patterns of Run #00 are much clearer than the 

patterns presented in Run #10. Correspondingly, the behavior of the patterns is altered when 

the correlation structure has been changed. Eventually, there are cases simulated as all three 

process means are shifted upward or downward, the sample T 2 value are around the control 

limits which indicates the out-of-control signals are very possible to be misidentified. Such as
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Cases #1, #4, #11, #17, #24, and #27 in Run 00, and Cases #1, #2, #4, #5, #6, #10, #11, 

#13, and so on.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 20 27
X1 -  - -  - -  - -  - -  O O O O O O O O O * - - * - * * * * * - - * - *
X2 - _ -  0 0 0 f * - * * - - - 0 0  0-*- + + - -  - 0 0 0 ^ - * - ^
X3 - 0 ^ - - 0 * - - 0 > - 0 ^ - 0  ^ - O ^ - O - f - O - ^ - O -

450 i 
400 -j 
350 -j 
300 i  
250 -j
200 j
150
100
50

I* ...

LN K j * *  t M A j *  V  ItL
hI%

1 2  3 4 5 6 7 8_ 9 10 _11 12 1 3 _ 1 4  1S 16 17 18 19 20 21 22 23 24 25 26 27
Run 00 : X , = 3 .0 3 .F ,  =15.01, X ,  =  8 .9 9 .p „  = 0 .6 5 .p „  = 0 .8 9 .p n = 0.53

100 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Run 10 : F, = 2.94. jF, =15.00. F, = 8 .9 9 .p ,. = 0.26. p„ = 0 .0 9 .p a  =0.23

Figure 5.1 T 1 Control Charts for Run 00 and Run 10 with Control 
Limits at a  = 0.3%

5.2.2 Multivariate Profile (MP) Control Charts

To construct multivariate profile chart, first one needs to establish T 2 control chart 

that was shown in the previous section. Then, compute and plot the standardized normal
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^

variates, d tJ = ——----- - ,  for each variable with T 1 simultaneously. Here m, is a target value

for the process variables, and it is estimated by X , .

The sample multivariate profile data are plotted in Figure 5.2 as three individual plots 

are for each variable. The MP charts indeed are shown clear patterns that agree with twenty- 

six states of shift combinations. Additionally, the patterns are not changed when the process 

correlation structures are different. However, the patterns can not be very useful if T 2 is not 

able to correctly signal the out-of-control states.

5.2.3 Principal Component Control Charts

To establish a set of principal component control charts for the standardized variables, 

the eignenvalues and eigenvectors of correlation matrix must be obtained first. They are listed 

below for both simulation runs. For simulation Rim #00 and #10, the eigenvalues (A.), and 

eigenvectors (e) are listed below:

/̂fcmoo K  *.3] = [2.39 0.51 0.10],and

'  Run 00 — [e i/ '21 '31J

0.62 0.23 0.75
0.52 -0 .84 -0 .1 7
0.59 0.49 -0 .6 4
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>•.„,»= [1-39 0.92 0.69]iand
' Run 10

0.55 0.65 -0 .52
0.66 0.04 0.72
0.51 -0 .76  -0.41

The independent sample principal components Yu  for standardized variables Zu  are 

obtained, through the following equation,

Y jJ  = e i ,/Z i ,l  + e i ,2 ^ i .2  + e/,3 /̂,3-

Principal components, Yu , are plotted in Figure 5.3. The principal component plots

are displaying the patterns in both simulation Run #00 and Run #10. However, the patterns 

for both simulation runs are not identical, which means the uniqueness of the distributional 

pattern for principal components does not exist between two different correlation structures. 

Further, the patterns do not directly correspond to the shift combinations. To interpret the 

nature of mean shifts according to the pattern becomes very difficult, especially as the number 

of variables increases.

5.2.4 Regression-Adjusted Control Charts

To apply the standardized data on the regression-adjustment procedure, Eq. 2.3 has to 

be rewritten as following;

H  = diag[diag(R“' )] 1/2 R _l Z ,
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where Z is the standardized sample data of X, R'1 is the inverse of the sample correlation 

matrix. The R '1 of both the simulation runs are computed and listed as follows:

For the simulation Run 00,

R -i
Run 00

5.92 -1 .50  -4 .4 5 '
-1 .50 1.77 0.38
-4 .45  0.38 4.74

, and

Simulation Run 10,

n - l  _  
^Run 10 ”

1.07 -0 .2 7  -0 .03
-0 .27  1.12 -0 .23
-0.03 -0 .2 3  1.06

Hawkins (1991) in his research suggested to plot the regression adjusted data by either 

traditional Shewhart control charts or GiSum control charts. In this study, the regression- 

adjusted data, H , , where / =1, 2, 3, are plotted as three individual charts without any further

transformation by CuSum procedure. These three charts are shown in Figure 5.4. The 

regression-adjusted sample statistics are presenting clear patterns in both Run #00 and #10. 

Nevertheless, only the patterns in Run #10 agree with the 26 out-of-control states. In Figure 

5.4, H l of Run #10 indicates variable x, shifted down from case #1 to #9, no shift from 

case #10 to #18, and shift upward between case #19 to #27. Similar interpretation can be 

concluded on both variable x2 and x3. Unfortunately, the patterns in Run #00 do not
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correspond to the expected out-of-control states. Based upon the observations, it can be 

conclude the patterns of sample regression-adjusted variable are not unique at least when the 

correlation structure is different between two processes.

5.2.5 Major Element Control Charts

The computational procedure and the interpretation of the major element control charts 

have been illustrated in detail in Chapter 4. Figure 5.5 displays the major element control 

charts for both simulation runs. The sample major elements of both runs have shown the 

unique directional patterns for all twenty-six out-of-control states. In addition, each pattern of 

the three process means can be interpreted as the direction of the simulated shift in process 

means.

5.3 Conclusions

T 2 control charts can effectively signal most of the out-of-control states, however, it 

is very sensitive to the process correlation coefficient structure change. Sample T z statistics 

for each process have shown its own distributional patterns with respect to the corresponding 

shifts in process means. That is, different correlation structure shows different pattern, 

indicating that the pattern is not unique. Surprisingly even with one standard deviation, T 2 

becomes very insensitive when the process variables are with correlation structures.

Multivariate Profile charts are established based the signals from T 2 control chart. 

Therefore, it automatically loses its power to reveal the nature of the process mean shifts if the
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out-of-control status is not reflected by T 2. Although patterns of MP sample data agree with 

the corresponding the 26 out-of-control states, the patterns will become unclear when the 

changes in process means are small.

Use the principal component analysis and regression adjustment to transform 

multivariate sample data that have shown the relatively similar results. Such that both of the 

control charts are shown some patterns, however, the patterns are not unique to each of the 

out-of-control states and do not agree with the simulated shift combinations

The three major element control charts for three variables displays twenty-six unique 

patterns that are free of the change in the process correlation structures. Furthermore, the 

patterns are directly corresponding to each combination of the process mean shifts. 

Therefore, we can conclude that the major element control charts overcome several 

deficiencies unlike the other multivariate control charts that include the classical T2 control 

charts. It is also really easy and simple to apply. The shortcoming of the major element 

control chart as discussed in Chapter 4, is that the patterns will become less clear when the size 

of change in process means get smaller. The following chapters presents practical application 

procedure, and discusses how the major element control charts can be used more efficiently 

and effectively.

In this study, the trivariate process sample data of two simulation runs are used to 

construct four types of multivariate control charts. The results of comparative analysis have 

shown that only the multivariate profile control charts and the major element control charts 

have show their sample statistics consist of unique patterns for each of 26 out-of-control
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states. The other multivariate control charts including the T 1 control charts have shown the 

patterns, however, the patterns are not unique to the out-of-control state when the correlation 

structures of the both processes are different from each other. To further verify these 

findings, it is necessary to apply more runs of simulated data with different combinations of 

process parameters (e.g. positive correlation vs. negative correlation structure) to show 

whether the correlation structure is the only factor to affect the clarity and uniqueness of the 

patterns of the sample statistics.
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C h a p t e r  6 

A  P r o c e d u r e  f o  r  P r a c t i c a l  A p p l i c a t i o n s

A set of multivariate control charts, named major element control charts, is now 

available to monitor the changes in process means. There are two fundamental functions that 

the major element control charts can usually provide.

• To detea an out-of-control state, and identify the variable among those correlated 

variables that caused the changes in the process means.

• To provide information about the direction of the changes in the process means.

In order to establish control charts for the major elements, it is desirable to follow a 

set procedure. A five-phase procedure is outlined to appropriately set up the major element 

control charts and successfully serve their fundamental functions. Phases of the procedure 

includes:

• Define the process,

• Collea the data,

• Analyze the data,

• Interpret and identify out-of-control signals, and

• Formulate, implement, and follow up corrective actions.
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An overview of the procedure is presented in the succeeding section. Each phase of 

the procedure will be reviewed, however, some of the important issues will be further 

discussed in detail the remainder of this chapter.

6.1 Overview

• Define the process

The process must be understood in terms of its relationship to  other operations and 

users both upstream and down stream, and in terms of the process elements (people, 

equipment, material, measurement, method, and environment) that affect it at each stage. To 

achieve the best understandings of the process, the following questions need to be answered 

while any techniques are applied to analyze the process. (AIAG, 1992) The questions are:

1. What should the process be doing?

2. What can go wrong?

3. What is the process doing?

Many techniques such as the histogram, the cause-and-effect diagram, and the process 

flow diagram help answer these questions. Furthermore, they can make the relationships 

among the process elements visible and allow the pooling of experience from people who 

understand different aspects of the process.
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• Collect the Data

There are two important aspects of the data collection procedure. First, the procedure 

has to decide what quality characteristics to be observed, and how to observe them. Then, a 

sampling procedure need to be planned which is concerned with the selections of sample size, 

sampling frequency, and number of samples. The details of the sampling procedure will be 

discussed in detail later in section 6.2.

To determine what quality characteristics should be observed over time, first one 

should look into the current and potential problem area of a process. Considering existing 

evidence of waste or poor performance (e.g. scrap, rework, excessive overtime) and area of 

risk (e.g., upcoming changes to the design of the product, or to any elements of the process). 

Sometimes, review of the process's history or construct a Failure Mode and Effects Analysis 

(FMEA) would help to identify the most important quality characteristics.

In many manufacturing environments, there are a large number of variables to make 

up a process. It is another concern that how many quality characteristics should be observed 

at the same time. Although a multivariate process control scheme is designed to observe 

multiple quality characteristics of a process simultaneously, it usually will become very tedious 

and inefficient as the number of variables gets larger. Therefore, study efforts should be 

focused on those characteristics that are most promising for process improvement, and can be 

proved that there is a need to control them simultaneously.

The correlation coefficient among the variables can help a great deal in determining 

how many vanables need to be monitored by the multivariate control charts. Correlation
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coefficient between two quality characteristics is bounded between -1 and +1. If it is 

extremely high, say 0.95, two variables can be treated as one, or if it is very low, say 0.1, then 

these two variables should be probably treated as two independent variables. There is no 

specific range of correlation coefficient for which pairs of variables should be monitored by 

the multivariate control scheme. Nevertheless, it is a good measure to assess what the 

multivariate control charts is for two possibly related variables.

• Analyze the Data

The procedure of analyzing data is planned to ensure that the process is in a state of 

statistical control. The major element control charts are designed to test how the process 

means change over time. To establish the control limits for the major elements, it is very 

important to assure variations among the variables are maintained at a constant level. 

However, the methods of evaluating the dispersion of a multivariate process are very limited 

as was discussed in Chapter 2. Control charts for Z "  and log|.S| proposed by Chang (1991) 

are easier to understand and to implement than the other charts. Therefore, to examine the 

stability of a multivariate process, this research suggests applying control charts for Z" and 

log|Sj which is the most complete procedure introduced by Chang (1992) to look over 

correlation and variance-covariance among variables respectively.

After process variability is examined to be in-control, the sample means of variables 

have to be investigated with control limits calculated from the process means and process 

variance-covariance matrix, which are estimated by average of sample means and average of 

sample variances-covariances. The detailed procedure will be discussed in section 6.3
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• Interpret and Identify Out-of-control Signals

Once the control limits for the major elements are established, the sample data should 

be continuously collected from the process and plotted against the control limits. The major 

element control charts would show the out-of-control signal once the process means are 

shifted. To detect the out-of-control signals and relate the signal to physical evidence of the 

process will assist to eliminate assignable causes of the process. In this research, a set of zone 

rules modified from the univariate case is introduced to enhance the capability of detecting the 

out-of-control signals while apply the sample major elements control charts. Moreover, a 

program written in Microsoft Excel is provided to assist user to recognize expected pattern for 

all kinds of shift in process means. Both of the procedures will be discussed in details in 

Section 6.4.

• Formulate, Implement, and Follow up Corrective Actions

Up to this point, the major element control charts provide the information to identify 

the special causes, an act on eliminating the causes will be the immediate solution to redeem 

the problems. However, a cosmetic solution will not result in any real, long-term process 

improvement. It is very important to find the underlying root causes and formulate the 

corrective actions to attack the problems. Therefore, an off-line analysis of the major elements 

should be conducted. Furthermore, developing a serious plan of implementation and follow 

up of the corrective actions will be an essential component of an effective multivariate 

statistical process control.
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6.2 Sampling Plan for Major Element Control Charts

An essential idea of using control charts is to collect sample data according to what 

Shewhart called the rational subgroups or samples concept. Generally speaking, it means that 

samples should be collected from a system whose variation is only subjected to common 

causes. In other words, the samples should be selected so that if assignable causes are present, 

the chance for differences between samples will be maximized, while the chance for 

differences due to these assignable causes within a sample will be minimized. Whether or not 

the objectives of the rational sample are achieved, they will determine the effectiveness and 

efficiency of the control charts. Assume that the sample data are collected rationally from a 

trivariate process. By appropriately selecting the other factors such as the size, frequency, and 

number of samples would enhance the capability of detecting abnormal shifts in process 

means while the major element control charts are used.

6.2.1 Selection of Size, Frequency, and N um ber of Samples

The major element control charts are developed from measurements of a set of 

particular quality characteristics of a multivariate process output. These data are reported in 

small number of samples of constant size, usually from 6 to 10 consecutive pieces for a 

multivariate process that monitors three variables, with samples taken periodically. A data 

gathering plan must be developed and used as the basis for collecting, recording and plotting 

the data on the major element control charts.
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6.2.1.1 Samples Size

The samples should be chosen such that opportunities for variation among the units 

within a sample are small. If the variation within a sample represent the piece-to-piece 

variability over a very short period of time, then any unusual variation between samples would 

reflect changes in the process that should be investigated for appropriate action.

Based on the studies in Section 4.4, the sample should typically contain 8 to 10 pieces 

consecutively during the initial study of a trivariate process. Also, produced pieces must 

represent only a single process. The intention is that the pieces within each sample would all 

be produced under very similar production conditions over a very short time interval with no 

other systematic relationship to each other. Further, the sample size must remain constant for 

all samples while plotting the major element control charts.

6.2.1.2 Number of samples

From a process standpoint, enough samples should be gathered to assure that the 

major sources of variation have had an opportunity to appear. Determination of the number 

of samples very often depends on the production rate. Although large number of samples 

would provide a sufficient amount of data for accurate computation of the control limits, it 

would delay the use of control charts if the production of samples takes too long to complete. 

From the simulation study in Chapter 4, a minimum of 35 samples or more containing about 

400 or more individual readings of each variable collection gives a good indication of the 

process’s stability. If the process is stable, good estimates of the process location and spread 

can be obtained.
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6.2.1.3 Frequency of Sampling

As with any control charts, the frequency of samples is a function of the production 

rate, the cost of inspection, the failure rate, and the cost of failures. Yet, the goal of the major 

element control charts is to detea the changes in the process over time. Samples should be 

colleaed often enough, and at appropriate times, that they can reflea the potential 

opportunities for change. Such potential causes of change could be due to work-shift changes, 

unskilled operators, warm up trend, or new raw material lots, etc.

During an initial process study, the samples themselves are often taken consecutively 

or at a short interval, to avoid any faaors that can contribute to the instability of the process 

over a brief period. As the process demonstrates stability (or process improvements are 

made), the time between samples can be increased. Sample frequencies for ongoing 

production monitoring could be twice per shift, hourly, or some other feasible rate.

6.2.2 Supplementary Tool - Bootstrap Percentile Control limits for Major Elements

In some practical applications, it is unable for us to follow the sampling plan suggested 

in the previous section due to the manufacturing conditions. Moreover, the sampling 

frequencies are limited because of concerns related to the production rate or the inspection 

cost. The total number of observations is usually limited, or it takes a long time period to 

collea a suitable size of sample data in the types of production environment described earlier. 

When the total number of observations is too small, say 150 observations for a trivariate 

process, it is difficult to obtain good estimates for the process parameters, and to ensure the 

independence between the consecutive samples. Thus, the control limits can not be
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appropriately estimated when the two assumptions do not hold. In such a situation the 

bootstrap percentile method can be used to estimate the control limits for major elements, and 

the procedure is introduced below.

6.2.2.1 Theoretical Background

The theoretical development of bootstrapping concept was introduced by Efron 

(1979) to estimate the sampling distribution of a given statistic. There are few advantages for 

considering the use of bootstrap. First, the bootstrap is a computer intensive resam pling  

procedure that does not require a priori distribution assumption. Second, it was developed to 

find the distribution of statistic when the distribution is not known. A large body of research 

on and applications of the bootstrap have accumulated in 1980's and 1990's. Nevertheless, the 

most important work on the bootstrap applicable to process control is related to the 

assessment of confidence intervals. Hall (1989) gives a theoretical comparison of the different 

bootstrap methods that can be used to determine the confidence intervals. Related discussions 

are given by Efron (1987), Didcdo, and Romano (1988). Efron (1990) proposed a percentile 

method, with modifications, to obtain estimates of percentile of a sampling distribution. The 

complete works are documented in Effiron and Tibshiranis (1993).

A number of articles discussing the use of the bootstrap with respect to quality have 

recently been published. Gunter (1991-1992), in a series of papers, discussed Efron's 

percentile method and considered application of the bootstrap to the assessment of process 

capability for hole-drilling errors and life test of a compressor. In addition, Franklin and 

Wasserman (1992) had discussed the use of the bootstrap lower limits on process capability. 

In 1992, Bajgier first proposed bootstrap approaches for assessing process control limits for a
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X  control chart. The Bajgier's approach assumes that the process is stable and in control, 

when the control limits are assessed. Recently, Seppala et al. (1995) proposed to use within 

group variance model for estimating process variances instead of using pooled variance 

estimates in Bajgier’s approach when using the bootstrap to assess control limits. 

Furthermore, Sepala et al. (1995) has extended their applications of percentile bootstrap 

method to estimate the process control limits for X  control chart.

Along the development of the bootstrap method with respect to statistical process 

control, the bootstrap is not much discussed or considered to use for designing multivariate 

process control charts. Liu and Teng (1996) suggested that perhaps combining the data depth 

approach (Liu 1990, and Liu and Sigh 1993) and the moving blocks bootstrap method may 

lead to nonparametric approach for statistical control of dependent multivariate observations.

In the application of the major element control charts, the percentile bootstrap 

method suggested by Seppala et al. (1995) is adopted to improve estimates of control limits. 

Via simulation, the comparative effects of control limits estimated by the bootstrap percentile 

method versus the theoretical control limits are evaluated under the combinations of different 

level of sample size and number of samples. The application procedures of the bootstrap 

resampling and percentile control limits for the major elements are discussed in the successive 

sections.

6.2.2.2 Bootstrap Resampling Algorithm

The general bootstrap resampling algorithm (Efron, 1979) is as follows:
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1. Initiate an iteration counter i = 1 and set B, a large number (1000-2000).

2. Draw a random sample X ’{, X 2,---,X'nof: size n from the initial sample vector 

X l, X 2, . . . , X n with replacement, and compute the bootstrap value for the statistic 

of interest, T* = T^X^, X 2,  , X ' ).

3. If i equals B, stop. Other, increment i to i +1, and repeats step 2.

The bootstrap algorithm needs to be modified to take advantage of variance reduction 

techniques that are typically used in Monte Carlo simulations. In the general bootstrap 

resampling procedure, it is assumed that each observation has an equal probability of selection 

for a bootstrap sample. The bias will occur if there are unequal proportions of these 

observations in bootstrapped samples. A computer intensive procedure provided by Davison 

et al. (1986) guarantees equal probability of observations in the pooled bootstrap samples. 

The procedure, called balanced bootstrap algorithm, is modified by Seppala et al. (1995) for 

assessing process control limits from a series of k  sample vectors of sample size n collected 

from an in-control process, where N  is the total number of observation available for bootstrap 

sampling, is described as follows:

1. Obtain the resample size, B, by finding an integer, A, such that B=Ak > 1000 

(minimum number of resamples required to obtain accurate percentile estimates).

2. Replicate the original N  observation vectors A times for a total of Bn observation 

vectors (note that balance is achieved since each observation vector occurs A 

times).
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3. Randomly permute the A N  observation vectors.

4. Obtain n consecutive observation vectors with replacement B times from AN 

permuted observation vectors, B sample vectors will be drawn at the end of 

resampling.

5. For each bootstrap sample, compute the statistic of interest T ’ , i = 1, 2, ..., B. 

For the application of the major element control charts, the interest T ’ is the 

sample major elements.

6.2.2.3 Percentile Control Limits

After bootstrap resampling for B times, we will obtain B statistics of interest results, 

T ’ . The non-parametric percentile will be used to estimate the control limits at a  level. To 

estimate accurately, the interpolation will be used to determine the percentile control limits. 

Let y(\),y(2),...,y{m) be a set of ordered statistics for a set of m  observations. Further, let j  

be the greatest integer that is less than or equal to (m+l)p to find the q value for p  percentile. 

Then,

=

y(j) + (im + 1) p - + 0- y if))  if 1 < j < m  

y{i) i f y < i  .

y(m) if j > m

Thus, to find control limits, we calculate the interpolated a/2  and (1 -a/2) percentiles 

using the m  ordered observations of the bootstrap estimate of the sampling distribution of 

T(x,,X2,-,Xn).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

101

6.2.2A Simulation Results and Conclusions

This research has designed a plan of simulation to study the best resample size when 

the number of sample observations of an in-control trivariate process is limited between 150 

and 400. The observations can be regrouped with the sample size equals to 6 and 8, and the 

number of samples is at 25 and 50 levels in each case. The resample size, B, used to run 

bootstrap resampling is chosen at four levels: 1000,1500, 2000, and 2500.

Details of this study are presented in Appendix V that include the design and analysis 

of the simulation study, and the SAS program used to run the Bootstrap Resampling and to 

compute Percentile Control limits. The following conclusions are drawn based on the 

simulation results and analyses.

• For the sample size of 6 and 25 samples, 2500 resamples will give the best estimates of 

the control limits for the major elements which contains the smallest average of bias is 

between 1.5% and 2.5%, when compared with the theoretical true control limits.

• While the number of observations increased to 400 for 50 samples of size 8, 1000 

resample is enough to give the estimates of the major elements control limits with 

average bias of 3.86%.

• Overall, for the number of samples between 25 and 50 does not make much 

difference between the percentile control limits and theoretical control limits. We 

suggest using the larger sample size (e.g. select sample size of 8 instead of sample size 

of 6) while the number of sample data can be collected is limited. Then, run bootstrap 

resampling at size between 1000 and 2000. This should give very good estimates of 

control limits for the major elements.
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Before the major element control charts can be appropriately constructed, the sample 

data collected for the initial study must be examined to show the stability of the process. The 

procedure includes three steps. First, check the correlation coefficients among variables by 

plotting Z "  suggested in Chapter 2 for each sample correlation. Then, examining variance- 

covariance matrix of each sample by log | S j . Finally, if both correlation and variance- 

covariance among sample data do not show any abnormal pattern, the control limits for major 

elements can be calculated. In this case, plot sample major elements to find out whether the 

process means have changed. When the abnormal pattern of plotted data occurs, it is 

necessary to identify what causes the problem. Further, make effort to remove the problem, 

recollect the sample data, and check them again until the stability of the process is assured. In 

the following section, a trivariate example will be presented to show how the necessary 

computation should be carried out.

6.3.1 Checking the Correlation among Variables by Z **

For a trivaraite process, there are three plots for three correlation coefficients 

respectively. First, calculate correlation coefficient matrix of each sample data. Let r ^  bethe 

i* sample correlation coefficient between variable I and m.

Then. Z iJm = j l o g
V. 1 ~  r iJm  J

where i = 1, 2,..., k; /, m  = 1,2,3 for a trivariate process; and l ^ m .
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^Zjjm + rijm 23Z(/m +33 rilm 5 rt3, /mZ "  -7   /,/m /,/m —  — /,/m • /,/m /,/m * r  «
t / m  = ^ f / m ----------------------------------------------------------------------------------------------------------------; ----------------------------------,  j V  —  1

'•ta •/m 4iV 96N2

where k  is the number of samples, and n is the sample size.

Compute the control limits, Z]'m ±  A^]Var{z2 ) , as references to examine the plotting

pattern of Z " , where Z*’ is the average and Var[z','m) is the variance of Z ]'m. A  is a pre

selected coefficient, say 3. The data should be randomly distributed as the plots in Figure 6.1.
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Figure 6. i z;: plots for A Trivariate Process
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6.3.2 Checking the Variance-Covariance among Variables with log|S|

To check the variance-covariance of each sample, calculate the determinant of sample 

variance-covariance matrix first. Let S; be the variance-covariance matrix of & sample. Then 

take log of the determinant of SL, as log|S,|. A  chart with 100(1 — aj'/o probability control 

limits is constructed as

UCL =  toijsi + Z y  { jy ar(log|S|))

C i  = toijs[
LCL = toijlj -  Z y i j v ar(log|S|))

where log|S| is the mean of log|S,|, var(log|S|) is the variance of log[S,|, and Zan. is

a/2 percentage point of the standard normal density. The control limits here are only used as 

references. A set of sample data must not have an abnormal pattern, and it should be 

randomly distributed as in shown the Figure 6.2.

1 7 log |S |

0

•1 J

-2 J

•3
0 10 20 30 40 50

Figure 6.2 log|S f | Plot for Checking the Sample Variance- 
Covariance
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6.3.3 Evaluating Process Means with the Major Element Control Chart

Computational procedure for the major elements had been discussed in a great detail 

in Chapter 4. This section simply summarizes the equations for calculation of sample major 

elements and construction of control limits.

M iM is the & sample major element of variable /.

Let X tJ —X , =  A , ,, find M'it = •

0 ,A ,/= 0

UCL, = 

CL, =0
1*1VI i / \  nk j X \ ,  i - ,<z/2

LCL, = - M]
J*lJ

k - i
nk Z u - ,a l l

where k  is the number of samples, and n is the sample size. All other notations are as defined 

earlier.

In the major element control charts, M], and control limits for each variable are

plotted against to each other. For a in-control process, the sample major element should be 

randomly distributed around the center line which equals to zero. Figure 6.3 is a sets of major 

element charts with their control limits.
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Figure 6. 3 Major Element Charts for an In-control Process
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If any abnormal signal shows up in the major element control charts, it should be 

analyzed and the assignable causes should be identified. Then, act on the special cause to 

improve the process. Reevaluate the process variability and process means, revise the control 

limits of major-element control charts.

6.4 Interpretation of Major Element Control charts

As the research attests that an expected pattern will show whenever a shift occurs in 

the process means. Nevertheless, the shifts must be detected as soon as it occurs in most 

practical application. Therefore, a set of zone rules modified from the univariate case is 

developed to enhance the capability of detecting out-of-control signals of the major element 

control charts. In addition, the expected partem of major elements can be used as references 

for both on-line monitoring and off-line analysis. A user-friendly program is developed in 

Microsoft Excel, which is displayed in section 6.4.2 to assist user to apply the major element 

control chart.

6.4.1 Zone Rules for Out-of-control Signals Interpretation

Some of the tests in univariate control chart applications are referred as "zone rules" 

which are developed on the basis of a normal distribution of the sample statistics and their 

statistical independence. (DeVor et al., 1992) To set up zones for the major element charts to

be able to extend the zone rules of X  control chart appropriately, the probability of each zone 

must first to be evaluated. Because the sample major element follows an adjusted chi-square 

distribution with one degree of freedom, and the upper and lower control limits of major 

elements are mirror image of each other, the zone probability should be calculated using chi-
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square distributions. In this section, first we define and calculate the probability of the zones. 

Then, display examples for each zone rule and compute the risk for applying the zone rule to 

identify out-of-control signals. However, the zone rules explained in this section are just a 

theoretical proposal. The rules need to be applied in the practical field and further modified 

according to the practical situations.

2
x 1

Probability Distribution Function
99.73'

95.45

68.27' m

C B Ao 126

Figure 6. 4 Probability Distribution Function

6.4.1.1 Probability of Each Zone

The upper control limit for one side chi-square distribution is set at a =027%. For 

applying the tests, the control chart is divided into three sections between the upper control 

limit and zero line. Zone C is set from zero line to probability level at 68.27% at which point 

is mean of the sample major elements. Zone B is from upper boundary of Zone C to 

probability level at 95.45% and Zone A is from upper boundary of Zone B to the upper
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control limit. Figure 6.4 displays the probability distribution of a chi-square variable with one 

degree of freedom along illustrates probability level of the three zones defined earlier.

6.4.1.2 Combined Chi-square Distribution

For the combined chi-squared distribution, we recall that the sample major element,

(— = V . . .  f|R lYjt-1̂[Xn — X , ) S"  , is distributed as y-y- ----  times a chi-square variable having 1 degree
^ |R| nk )

of freedom.

P (x?^ u )= a . (6.1)

Based on the theory of statistics, P(xf > u) can be written as follows:

p(xf *»)= pfef > u)nz>o)+  p(Gcf > o )n  z  < o) 

= p(z > 01 x? > o). p(xf >u)+ p (z< 0 | x ? ^ ) .  p(xf > u) 

Let p(z>o |x f>  u)- P(xf>u)=p(+xf > +u)

and,

p(z < 01 xf > o)- P(xf > u) = P(- xf < -u )

Also p(z > 0 |x? > o )= p (z< 0 |x f  >u)=0.5, (6.2)

Apply Eqs. 6.1 and 6.2, p(+ xf ^ +u)= p(- xf < -u)=  0.5a
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The probability and risk of each zone while the sample major element fell in are 

calculated in Table 6.1 and illustrated in Figure 6.5.

Table 6.1 Probability of Three Zones

C hi-S quare  Distnbution Combined C h i-sq u ared  Distnbution

Zone u P(r,<u) a 0.5P(+X2, < u) o r  0.5P(-X2, > -u ) P(+X2, > u )  o r  P(-X2, <~u)

C 1 68.27% 31.731% 34.13% 15.87%
U 4 95.45% 4.550% 47.72% 2.28%
A 9 99.73% 0.270% 49.87% 0.13%

UCLo/2=0.13%

: a
i

a/2=2.28%
B

0/2=15.87%
C
C

B

a/2=15.87%

0/2=2.28%

A
LCLo/2=0.l3%

Figure 6. 5 Probability and Zones for Major Elements Control 
Chart
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6.4.1.3 Zone Rules

In the previous section, we have established the upper and lower control limits, and 

the three zones, which will be used to identify the unnatural pattern of a sequence of sample 

major elements. However, before the presence of special causes can be tested on-line by 

applying any zone rules, the process has to be brought into a state of statistical control. 

Therefore, we will discuss the appearance of a process in a good statistical control first. Then, 

five zone rules based on the simulated data and their usage in major element control chart are 

summarized with graphic illustrations. These tests will provide the basis for the statistical 

signals, which indicates to us that the process has undergone a change in its mean level. 

Nevertheless, each test may as well as contain certain level of probability that provides false 

alarm while it is applied. Consequentfy, the risk of each test is calculated along with the 

illustrations.

Dr. Deming (1993) pointed out in "Out of the Crisis" that the rules have to be made 

in advance, for use in the future. Further, any rule as a practical matter, must be constructed in 

the absence of full information about the future. However, the more practical information 

about unnatural patterns will not only improve the chances of identifying the special cause, but 

also reduce the probability of false alarms. Afterwards, we like to suggest collecting the 

process information as much as possible to improve the capability of each zone rule.

Rule 0. Random Pattern

When a process is in control, there occurs a random pattern of variation, which is 

illustrated by control chart in the Figure 6.6. The sample results are scattered evenly around 

zero line. Because the sample major element with direction is distributed as the combined chi-
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square distributions, about 50% of all in-process sample results will be randomly distributed 

above zero line, and the other half will be below the zero line. Further, we expected certain 

proportion of sample major elements to fall in Zone A and Zone B.

i

l
! A

i

0

A

Figure 6. 6 An Example of Major Element Control Chart for In- 
Control Process

Rule 1. Extreme Points

Rule 1 is applied to identify the extreme points - points beyond the 99.73% control 

limits. The specific rule is that while the sample result is located beyond Zone A, the risk of 

misidentification out-of-control signal is 0.27%. Figure 6.7 shows several such the 

occurrences as by identified this rule, indicating a special cause that may have caused out-of

control signals.
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o

Figure 6. 7 Examples of Extreme Points 

Rule 2. Two out of three points in Zone A  or beyond on one side of the center line.

P(+X? > £ )= P (-X ?  <-&)=  2-28%

risk+ = P((l out of the first 2 points > B) and (3rd > B )) 

' 2 '

Kb
(2.28%)2 (47.72%) = 0.0496%

Similarly,

risk_ = P((l out of the first 2 points < —B) and (3rd < -B  ))

Kb
(2.28%)2 (47.72%) = 0.0496%

Total risk = risk+ + risk. = 0.0992%
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0

Figure 6. 8 Two out Three Points in Zone A or Beyond

If there are two of any three successive sample results in Zone A or beyond, it signals 

the out-of-control condition of the process. Figure 6.8 presents several possible occurrences 

of Rule 2. The chance of false alarm is around 0.0992%.

Rule 3. Four out of five points in Zone B or beyond on one side of zero line.

p(+x? > c )= p (-x f  <-c)=15.87%

risk+ = P((3 out of the first 4 points > C) and (5th > C )) 

rA\
(l 5.87%)4 (34.13%) = 0.087%

risk_ = P((3 out o f the first 4 points < - C)and (5th < -C ))

(l 5.87%)4 (34.13%) = 0.087%
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o

Figure 6. 9 Four out of five points in Zone B or Beyond

Four out of five consecutive sample results in Zone B or beyond presents the out-of- 

control condition. The probability of misidentification the out-of-control signal is about

0.174%. Figure 6.9 presents several examples for Rule 3.

Rule 4. Six out of seven points within Zone C on one side of the zero line.

P(c>+x? > o) = p (o < - jc? <-C)=34.13%

risk+ = P((5 out of the first 6 points > C)and (7th > C ))

(34.13%)s(l5.87%) = 0.15%

risk_ = P((5 out o f the first 6 points < -C)and (7th < -C )) 

( 6 '
(34.13%)5(l 5.87%) = 0.15%
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! B 

18

Figure 6.10 Six out of Seven Points within Zone C

Six out of seven consecutive points fall within Zone C  that indicates the process mean 

shifted upper or lower. The probability of misidentification of the out-of-control signal is 

about 0.30%. Figure 6.10 presents several examples for Rule 4.

Rule 5. Eight or More Successive Points non above or below Zero Line

p (+ x f> 0 )= P (-x ? < 0 )= 5 0 %

risk+ = P(All 8 points are on one side of center line)

= (50%)8 =0.391%

Total risk = risk+ + risk = 0.391%x2=0.782%

Rule 5 considers a long run of eight or more sample data strictly either above or below 

zero line. The presence of such a run indicates that the evidence is strong that the process
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mean has shifted from the grand mean. Figure 6.11 illustrates the run of eight points that fell 

above or below the zero line. The risk of this rule is 0.782%.

o

A

Figure 6.11 Eight or More Successive Points above or below the
Centerline

6.4.1.4 Probability of False Alarms Using Multiple Rules

The probability of any zone rules applied from above is a risk of false alarm. These 

zone rules are not all independent or mutually exclusive to each other, nevertheless, the 

probability of their joint occurrence is relative very small. In practice, one can approximate the 

total probability of false alarms of all the various zone rules as the sum of their individual risks. 

The following example illustrates on such estimation.

Suppose only zone rules #1 and #2 are used for the interpretation of an Major 

Element chart where the center line is set at zero line.
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The risks of false violation associated with these two zone rules are given as follows.

Let

a t = risk for the Zone #1 = 0.0027 

otj = risk for the Zone #2 = 0.000992

a 12 = Prob{(one of the first two > B) and ( the 3rd >  LJCL)} = 0.000029 

Thus the probability- of Type I errors in this occurrence is 

Risk = l-(l-ax X l-a^ = 0.00369=0.369%

6.4.1.5 Probability of False Alarms for Multivariate Process

The zone rule is applied to each major element independently, however, we like to find 

out the probability that zone rules used in each major element are giving the false alarm. The 

risk can be calculated as:

Risk = P(at least one major element control chart give false alarm)

-l-nc-a,),
/= l

where p is the number of variables, and a , is the risk of applying any of the zone rule to 

variable /.
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6.4.2 Reading the patterns

For the off-line analysis, the expected directional patterns of sample major elements 

are produced as an aid for user to identify the substantial change in process means. Based on 

the methodology developed in Chapter 3, Figure 6.12 and 6.13 illustrate the expected 

directional patterns for each possible combination of shifts in the means for the processes 

monitoring with three and four variables. In addition, Figures 6.12 and 6.13 are the displays of 

a Microsoft Excel program that generates all types pattern for different process parameters 

with different expected size of shifts. To interpret the pattern, follow the signs on top of the 

chart correspondingly. indicates the process mean of the corresponding variable has 

shifted upward, “0” indicates there is no shifts in the corresponding process mean, and 

implies that the shift in the corresponding variable is downward. The magnitude of each stack 

bar is the average of the shift size.

To use the Excel program to generate expected pattern, simplychange the correlation 

among variables and the expected size of shifts. Note that the pattern will remain the same in 

each combination of the shifts. Onfy the size of the stack bars reflecting the change in each of 

the process means will be varied according to expected value of the directional major 

elements.
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C h a p t e r  7 

S u m m a ry , D i s c u s s io n s  a n d  R e c o m m e n d a t io n s

7.1 Summary and Discussions

The control charts for major elements, developed in this research, have shown to 

be not only effective, but also informative for the control of multivariate normal process 

means. These charts are effective because they are highly sensitive to any one or more 

shifts in the means. They are informative because each chart is capable of independently 

displaying a unique out-of-control pattern of the sample major elements that are 

associated with only the shifted variable in question. These results were shown by the 

theoretical expectations of the sample statistics and by the analysis of simulated sample 

data of processes with various out-of-control scenarios. Also by simulation, the sample 

major elements were demonstrated to be robust to a wide spectrum of variance- 

covariance structures. By comparison, for example, the sensitivity of the T 2 statistic was 

shown to depend on the levels of correlation among the variables.

For actual applications, a step-by-step procedure was recommended for the set-up 

and interpretation of the major element control charts. Issues related to sampling 

strategy, including the use of bootstrap sampling for better parameter estimation when 

sample database is limited during initial chart construction, were discussed with some
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suggestions. To aid in routine chart interpretation, a set of zone rules similar to those 

used in reading X  charts was developed for the analysis of each of the major element 

charts.

The proposed method calls for constructing and/or maintaining a set of p sample 

major element control charts, one for each of thep variates. To plot the control charts, 

the p  sample major elements and their control limits are computed for each sample i by 

the following equations.

A„ A,v

> A,-# = 0

M'j is the Ith directional sample major element of variable /, where A(V = X , ,  —X ,  

and M ul = ( x , j - Z , } s " , l  = \,2,...,p  .

Control limits at an a  level for the major element control charts are:

UCL, = 

CL, =0 

LCL, = -

f W ] p t - n 2

U * l J I  nk J X l,I-a /2

v W ,

r k - \ '
\  nk j Xu-a /2

where k  is the number of samples, and n is the sample size.
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To illustrate the application of sample major elements that are derived from the 

quadratic form, Q, of a multivariate normal distribution, eighty-eight simulated data sets 

with replicates of a trivariate normal process were analyzed in detail. The control charts 

of sample major elements for all cases did show clearly recognizable directional patterns 

for all twenty-six mean shift combinations of a trivariate normal process with many 

different means, variances and correlations. These sample distributional patterns were 

found to be in agreement with the corresponding patterns expected from theory. 

According to the simulation results, fifty samples of size 10 should be collected before 

control limits are calculated to assure a reasonable reliability in parameter estimation.

Since the proposed control charts assume that the variance-covariance structure 

remains in statistical control, it is essential to have each sample checked for stability of 

both the variances and the covariances or correlations. Two additional control charts, 

one for the sample variances and the other for the sample correlations were presented as 

a possible supplementary procedure to the construction and operation of the major 

element control charts. It is noted, however, these supplementary charts are not capable 

of making diagnostic analyses of the specific nature of out-of-controls in variances and 

correlations.

Lastly, one major limitation of the sample major element control charts is that 

they are not applicable for those processes where samples of a size greater than one can 

not be taken meaningfully for statistical control.
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7.2 Recommendations for Future Research

Although recent work in multivariate process control has aimed mostly at 

improving the control charts’ effectiveness for practical applications, the actual use of 

multivariate control still remains very sporadic at best. One possible major reason of 

this seemingly lack of interest could be that few practitioners, including engineers, really 

think of multiple variables as a set w ith correlations. Another important reason might 

be due to the general shortage of success stories with multivariate control charts. A third 

one that is more directly relevant to this research is that these newer control charts have 

become either more complicated or more difficult statistically for typical process and 

quality engineers. The proposed major element control charts appear to be more user 

friendly both in their constructions and interpretations. To further develop 

methodological and operational improvements in multivariate process control, some 

areas for future research are suggested below from both the practical and theoretical 

perspectives.

7.2.1 Practical Applications

Since the three reasons mentioned above are themselves inter-related, or 

correlated, a “multivariate” approach is needed for future research in multivariate process 

control. It is, therefore, suggested that research in this area must involve heavily, if not 

exclusively, the practicing engineers, w ith the statisticians serve more as advisors rather 

than the sole players.
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Nearly all the known methods of multivariate process control either assume, 

explicitly or implicitly, a constant variance-covariance structure; or allow changes/shifts 

in all process parameters to occur without specific identifications. In the latter case the 

chart(s), similar to the T2 chart, are designed only to display a shift without regard to its 

nature. In either case, a better understanding of the inter-relationships of or the mutual 

effects between the mean vector and the covariance matrix will enhance the effectiveness 

of these charts in practice. Such fundamental understandings about, for instance, the 

physical meanings of a covariance change, are needed in order to improve the design and 

operation of multivariate control charts for variances and/or covariances. Another 

question of practical importance is how physically a change in the mean(s) will or will 

not affect a change in one or more of the variances and covariances, and vice versa.

7.2.2 Theoretical Development

Some areas for future research from a more theoretical perspective are suggested 

as follows.

1. One immediate research topic to follow is in the development of an exact or 

approximate probability distribution for each of the minor elements. Such could 

enable one to utilize the complete sample information for more detail analysis of out- 

of-control signals because of possible shifts in other process parameters in addition to

the means.
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2. The zone rules proposed for the interpretation of the major element control charts 

may be further improved, perhaps with experiences from actual field applications. 

While it is desirable to minimize the probability of false alarms, the corresponding 

probability of Type It errors should be considered in the design of the zone rules. 

Furthermore, the zone rules may be programmed for on-line, computer control and 

diagnosis.

3. To improve the sensitivity in detecting very small shifts in the means, while keeping 

the sample size from becoming too large, alternative statistics such as the CuSum and 

EWMA of sample major elements may be investigated for their advantages and 

disadvantages.

4. The variances and covariances of a process are subject to change either by themselves 

or by shifts in the means. Further research is needed in the development of schemes 

for overall controls that are more effective and/or more informative than the use of a 

generalized variance recommended in this research. As mentioned in (1) above, the 

statistical properties of sample minor elements may be studied for possible 

applications.

5. Performance evaluation of the major element control charts should be conducted in 

actual applications. The actual sample data may be used also for comparative analysis 

between the major element and other well-known multivariate control charts. One 

commonly used measure for the speed of signaling a process change is the Average 

Run Length (ARL). Some theoretical work is needed for the calculation of the ARLs
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of sample major element (and possibly also sample minor elements) both when the 

process is in control and is out of control.
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T i t l e  " T r i v a r i a t e  D a t a  S i m u l a t i o n ,  S a m p l e  M a j o r  E l e m e n t  a n d  C o n t r o l  
L i m i t s  C o m p u t a t i o n "

p r o c  i m l ;

/ *  True Upper Control Limits */
d R = d e t ( r ) ; d R l l = d e t ( r [ 2 : 3 , 2 : 3 ] ) ; d R l = d R l l / d R ;
d R 2 2 = d e t ( r [ { 1  3 } , { 1  3 } ] ) ; d R 2 = d R 2 2 / d R ;
d R 3 3 = d e t ( r [ l : 2 , l : 2 ] ) ;  d R 3 = d R 3 3 / d R ;
M 1 _ E = ( ( k - 1 ) / ( n * k ) ) * d R l * c ;
M 2 _ E = ( ( k - 1 ) / ( n * k ) ) * d R 2 * c ;
M3_E=( ( k - 1 ) / ( n * k ) ) * d R 3 * c ;

/* Observations Generation, X~N ( 0 , 1 )  * /
d o  k l = - l  t o  1 b y  1 ;

d o  k 2 = - l  t o  1 b y  1 ;
d o  k 3 = - l  t o  1 b y  1;
x l = ( n o r m a l ( r e p e a t ( p ,  1 ,  s i z e ) ) ) ;
x 2 = ( n o r m a l ( r e p e a t ( p + 3 2 5 6 , 1 , s i z e ) ) ) ;
x 3 = ( n o r m a l ( r e p e a t ( p + 1 0 3 2 5 6 , 1 , s i z e ) ) ) ;
x = x l / / x 2 / / x 3 ;
Y t = t ( 1 ) * x ;

u l = m u l + k l * a * s [ 1 , 1 ] ; u 2 = m u 2 + k 2 * a * s [ 2 ,  2]  ; u 3 = m u 3 + k 3 * a * s [3 ,  3] ; 
y l = y t [ 1 , 1 : s i z e ] + r e p e a t ( u l , 1 , s i z e ) ; 
y 2 = y t [ 2 , 1 : s i z e ] + r e p e a t ( u 2 , 1 ,  s i z e ) ; 
y 3 = y t [ 3 , 1 : s i z e ] + r e p e a t ( u 3 , 1 , s i z e ) ; 
y = y l / / y 2 / / y 3 ;  z l = t ( y ) ; z = z / / z l ;  
e n d ;

e n d ;
e n d ;

/* Sample Covariance */
d o  j = l  t o  k ;

v = n * ( j  — 1 ) + 6 5 0 1 ;  m = n * j + 6 5 0 0 ;  x j = z [ v : m , ] ;  
s u m = x j [ + , ] ;
x p x = t ( x j ) * x j - t ( s u m ) * s u m / n ;
S p = d i a g ( 1 / s q r t ( v e c d i a g ( x p x ) ) ) ;
c o r r = S p * x p x * S p ;
m e a n = s u m / n ;
x j = x j - r e p e a t ( m e a n ,  n ,  1) ; 
s s = x j [ # # , ] ;
s t d = d i a g ( s q r t ( s s / ( n - 1 )  ) ) ;  
c o v a r = s t d * c o r r * s t d ;  
c o v = c o v + c o v a r ;  
m e a n S = m e a n S + m e a n ;

s t a r t  d a t a ; / *  d a t a  g e n e r a t o r  * /

/* Basic Information */
d o  p l = l  t o  1 3 5 0 ;  
i n = j ( n ,  1 , p i ) ; 
s _ n o = s _ n o  /  /  i n ;  
e n d ;

/ *  S a m p l e  I n d e x  * /

s i z e = k * n ;  
c = c i n v ( a l p , 1 ) ;  
s i g = s * r * s ;  
l = h a l f ( s i g ) ;

/ *  S i z e  o f  O b s e r v a t i o n s  * /
/ *  C h i - s q u a r e  V a l u e  a t  A l p h a  l e v e l  * /  
/ *  V a r i a n c e  C o v a r i a n c e  M a t r i x  /
/ *  C h e l o s k i  F a c t o r i z a t i o n  * /

e n d ;
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/* Average Sample Variance-Covariance */
s i g m a = c o v / k ;  i s i g = i n v ( s i g m a ) ;
i s i g l = i s i g [ l , 1 ] ; i s i g 2 = i s i g [ 2 , 2 ] ; i s i g 3 = i s i g [ 3 , 3 ] ;
m e a n X = m e a n S / k ;
v a r = v e c d i a g ( s i g m a ) ;
v = d i a g ( 1 / s q r t ( v e c d i a g ( s i g m a ) ) )  ;
c o r _ b a s e = v * s i g m a * v ;
R = d e t ( c o r _ b a s e ) ;
R l l = d e t ( c o r _ b a s e [ 2 : 3 , 2 : 3 ] ) ;  R 1= R 1 1 /R ;
R 2 2 = d e t (c o r _ b a s e [{ 1  3 } , { 1  3 } ] ) ;  R 2 = R 2 2 /R ;
R 3 3 = d e t ( c o r _ b a s e [ 1 : 2 , 1 : 2 ] ) ;  R 3= R 3 3 /R ;
M l _ u c l = ( ( k - 1 ) / ( k * n ) ) * R l * c ;
M 2 _ u c l = ( ( k - 1 ) / ( k * n ) ) * R 2 * c ;
M 3 _ u c l = ( ( k - 1 ) / (k*n )  ) * R 3 * c ;
M i = M l _ E | | M l _ u c l I | M 2 _ E | | M 2 _ u c l | | M 3 _ E | | M 3 _ u c l ;  
p r i n t  m e a n X ;  p r i n t  c o r _ b a s e  s i g m a  i s i g ;  
p r i n t  M i ;

do  1= 1 t o  1 3 5 0 ;
v l = n * ( 1 - 1 ) + 1 ;  m k = n * l ;  x i = z [ v l : m k ,  ] ;  
m e a n i = x i [ + , ] / n ;  
m d = m e a n i - m e a n X ;
m l = m d [ l , l ] ;  m 2 = m d [ l , 2 ] ;  m 3 = m d [ l , 3 ] ;
m l l = a b s ( m l ) * m l * i s i g l ;
m 2 2 = a b s ( m 2 ) * m 2 * i s i g 2 ;
m 3 3 = a b s ( m 3 ) * m 3 * i s i g 3 ;
m a i = m l l | | m 2 2 | | m 3 3 ;
m d i = m d i / / m a i ;

e n d ;

/* Output Directional Sample Major Elements */
f i l e n a m e  t r i _ 3  ' m d 0 0 2 5 ' ;  
f i l e  t r i _ 3 ;  
do  i = l  t o  1 3 5 0 ;
M l E = m d i [ i , 1 ] ; M 2 E = m d i [ i , 2 ] ; M 3 E = m d i [ i ,  3] ;
p u t  M1E 1 0 . 5  +1 M2E 1 0 . 5  +1 M3E 1 0 . 5  +1 i  4 . 0 ;
e n d ;
c l o s e f i l e  t r i _ 3 ;  
f i n i s h ;

/* Input Information */ 
r = { 1 0 . 7  0 . 9 ,

0 . 7  1 0 . 6 ,
0 . 9  0 . 6  1 ) ;  

s = { 1 . 6  0 0 ,
0 1 . 2  0 ,
0 0 0 . 9 ) ;  

k = 5 0 ;  n = 1 0 ;  
c o v = { 0  0 0 ,

0 0 0,
0 0 0 ) ;  

m e anS ={ 0  0 0 } ;  
a l p = 0 . 9 9 7 3 ;  r e p = 2 5 ;  
m u l = 3 ;  mu2= 15 ;  m u3 = 9;  
a = 0 . 2 5 ; p = 1 2 5 ;  
r u n  d a t a ;
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Appendix II. Tables of Input Process Parameters and Simulated 
Process Parameters for 22 Simulation Runs
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Table II. 1: Input Process Parameters and Simulated Process Parameters for Run 00 & 01
Run: 00 Run: 01

All Positive Correlation Coefficients Two Negative and One Positive Correlation Coefficients

£ P a P P a P
0) +-• ■+-» 3  0) Shift Size for 3 1.6 1 0.7 0.9 3 1.6 1 -0.7 0.9

-  2  ro
Q.

Simulation 15 1.2 0.7 1 0.6 15 1.2 -0.7 1 -0.6

9 0.9 0.9 0.6 1 9 0.9 0.9 i
COo1 1

X, s-
X R X, s-

X R

+/- 0.25cr 2.9960 1.6520 1 0.6885 0.9109 3.0767 1.5635 1 -0.7476 0,9017

15.0597 1.2288 0.6885 1 0.5819 14.9506 1.1678 -0.7476 1 -0.6311

8.9949 0.9370 0.9109 0.5819 1 9.0390 0.89907 0.9017 -0.6311 1

x, s-
X R x, s-

X R

</> +/- 0.5a 3.0615 1.5635 1 0.7081 0.8881 3.0325 1.6125 1 -0.6842 0.9070
3in 15.0482 1.1678 0.7081 1 0.5973 15.0274 1.2130 -0.6842 1 -0.5804
VC
c 9.0316 0.8991 0.8881 0.5973 1 9.0254 0.8832 0.9070 -0.5804 1o'•*-*
J2 x, s-

X R x, s-
X R

E
C/3 +/- 1.0a 3.0280 1.6629 1 0.7091 0.9101 3.1069 1.5907 1 -0.6916 0.9046

15.0380 1.2000 0.7091 1 0.6263 14.9316 1.2207 -0.6916 1 -0.5783

9.0350 0.9579 0.9101 0.6263 1 9.0313 0.8871 0.9046 -0.5783 1
x, s -

X R x, s-
X R

+/- 1.5a 3.0369 1.5428 1 0.7098 0.8949 2.9892 1.5940 1 -0.7077 0.8909

14.9921 1.1691 0.7098 1 0.6160 15.0586 1.1978 -0.7077 1 -0.6169

9.0057 0.8975 0.8949 0.6160 1 8,9697 0.8903 0.8909 -0.6169 1
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Table II.2: Input Process Parameters and Simulated Process Parameters for Run 10 & 11
Run: 10 Run: 11

All Positive Correlation Coefficients Two Negative and One Positive Correlation Coefficients

!2 P a P F a P
<D

=3 0 ) Shift Size for 3 1.6 1 0,2 0,1 3 1.6 1 -0.2 0.1
-  & (0 CL

Simulation 15 1.2 0.2 1 0.15 15 1.2 -0.2 1 -0.15

9 0.9 0.1 0.15 1 9 0.9 0.1 -0.15 1
X, j -X R X, s-X R

+/- 0,25u 2.9582 1.5522 1 0.1917 0.1740 3.0024 1.6707 1 -0.1803 0.0031

15.1146 1.1759 0.1917 1 0.1346 15.0096 1.1416 -0.1803 1 -0.1662

9.0363 0.9018 0.1740 0.1346 1 8.9445 0.89764 0.0031 -0.1662 1
X, s-

X R X, s-X R

</> +/- 0.5a 3.0580 1.6707 1 0.2826 0.0315 2.9793 1.5925 1 -0.1401 0.1434
4>*
3(/) 14.8847 1.1416 0.2826 1 0.1350 15.0258 1.2000 -0.1401 1 -0.1660
a:
c 8.9852 0.8976 0.0315 0.1350 1 8.9978 0.9286 0.1434 -0,1660 1
.2
ra X, s-X R X, s-X R
ECO +/- 1.0a 3.0156 1.5957 1 0.2090 0.0417 3.0049 1.6309 1 -0.1592 0.1684

14.9505 1.1648 0.2090 1 0.2357 15.0675 1.1344 -0.1592 1 -0.2263

8.9296 0.8862 0.0417 0.2357 1 8.9935 0.9013 0.1684 -0.2263 1
x , s-

X R x, s-X R

+/-1.5a 2.9608 1.6454 1 0.2279 0.0865 2.9514 1.6301 1 -0.2145 0.1802

14.9811 1.1650 0.2279 1 0.0733 14.9827 1.2371 -0.2145 1 -0.1943
8.9698 0.9167 0.0865 0.0733 1 8.9420 0.8270 0.1802 -0.1943 1
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Table II.3: Input Process Parameters and Simulated Process Parameters for Run 20 & 21
Run: 20 Run: 21

All Positive Correlation Coefficients Two Negative and One Positive Correlation Coefficients

\n F a P F a P~ s.3 0) Shift Size for 3 1.6 1 0.3 0.8 3 1.6 1 -0.3 0.8
JE <0L -(0

Q .

Simulation 15 1.2 0.3 1 0.35 15 1.2 -0.3 1 -0.35

9 0.9 0.8 0.35 1 9 0.9 0.8 -0.35 1
X, s-

X R x, s-
X R

+/- 0.25a 2.8698 1.6345 1 0.3269 0.8152 3.0537 1.6475 1 -0.2492 0.7701

14.9942 1.2313 0.3269 1 0.3579 15.0187 1.2044 -0.2492 1 -0.3246

8.9593 0.9025 0.8152 0.3579 1 9.0183 0.92284 0.7701 -0.3246 1
* / s-

X R x, s-
X R

to +/- 0.5a 2.8524 1.6475 1 0.3692 0.7999 2.9577 1.6005 1 -0.2553 0.7796
■4— t

3
( 0 15.0590 1.2044 0.3692 1 0.4372 15.0697 1.1649 -0.2553 1 -0.3587
q:
c 8.9563 0.9228 0.7999 0.4372 1 8.9638 0.8802 0.7796 -0.3587 1o

‘•Mro X, s-
X R X, s-

X R
E
CO +/- 1.0a 3.1517 1.5182 1 0.3320 0.8048 2.9245 1.6066 1 -0.2844 0.7995

15.0217 1.1405 0.3320 1 0.3799 14.8870 1.1190 -0.2844 1 -0.3393

9.0784 0.8774 0.8048 0.3799 1 8.9995 0.9160 0.7995 -0.3393 1
x, s-

X R x, s-
X R

+/- 1.5a 2.9337 1.6421 1 0.2774 0.8079 2.9540 1.6045 1 -0.3708 0.8136

15.0511 1.2126 0.2774 1 0.3482 15.0563 1.2413 -0.3708 1 -0.4322

9.0274 0.9087 0.8079 0.3482 1 9.0199 0.9137 0.8136 -0.4322 1
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Table II.4: Input Process Parameters and Simulated Process Parameters for Run 30 & 31
Run: 30 Run: 31

All Positive Correlation Coefficients Two Negative and One Positive Correlation Coefficients

S2 F a P F a P

In
pu

t
Pa

ra
m

et
e

Shift Size for 3 1.6 1 0.85 0.4 3 1.6 1 -0.85 0.4
Simulation 15 1.2 0.85 1 0.8 15 1.2 -0.85 1

00o1

9 0.9 0.4 0.8 1 9 0.9 0.4 -0.8 1
X, s-

X R x ,
s-

X R

+/- 0.25a 3.0630 1.5569 1 0.8333 0.3279 2.9443 1.6588 1 -0.8523 0.4071

15.0324 1.1342 0.8333 1 0.7723 15.0429 1.2572 -0.8523 1 -0.8014

8.9795 0.8565 0.3279 0.7723 1 8.9774 0.89415 0.4071 -0.8014 1
x ,

s-
X R X, s-

X R

(/) +/- 0.5a 3.0804 1.6588 1 0.8868 0.5216 3.0647 1.5647 1 -0.8439 0.3802
4 -4

3(/> 15.0722 1.2572 0.8868 1 0.8349 14.9250 1.1801 -0.8439 1 -0.7918
OC
c 9.0314 0.8941 0.5216 0.8349 1 9.0515 0.9013 0.3802 -0,7918 1
o+3

x ,
s-

X R s-
X R

E
CO +/- 1.0a 2.9037 1.5474 1 0.8483 0.4188 3.1231 1.6150 1 -0.8412 0.3857

14.9492 1.1837 0.8483 1 0.8133 14.9067 1.2350 -0.8412 1 -0.8024

9.0078 0.9011 0.4188 0.8133 1 9.0443 0.9570 0.3857 -0.8024 1
x ,

S-
X R % 5-

X R

+/- 1.5a 2.9165 1.6343 1 0.8442 0.3653 3.1043 1.5931 1 -0.8367 0.3182

14.9442 1.1769 0.8442 1 0.7835 14.9178 1.1464 -0.8367 1 -0.7631
8.9834 0.9029 0.3653 0.7835 1 9.0463 0.8800 0.3182 -0.7631 1
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Table II.5: Input Process Parameters and Simulated Process Parameters for Run 40 & 41
Run: 40 Run: 41

All Positive Correlation Coefficients Two Negative and One Positive Correlation Coefficients

£ F a P F CT Pa>
4 _ i  -4-»3 Q) Shift Size for 3 1.6 1 0.95 0.9 3 1.6 1 -0.95 0.9=- b
-  2 ra a.

Simulation 15 1.2 0.95 1 0.875 15 1.2 -0.95 1 -0.875

9 0.9 0.9 0.875 1 9 0.9 0.9 -0.875 1
x ,

s-
X R */ s-

X R

+/- 0.25ct 2.9333 1.6435 1 0.9509 0.9071 3.0547 1.6084 1 -0.9467 0.8963

14.9432 1.2203 0.9509 1 0.8819 14.9669 1.2084 -0.9467 1 -0.8656

8.9715 0.9082 0.9071 0.8819 1 9.0284 0.90643 0.8963 -0.8656 1
X, s-

X R x ,
s-

X R

(O +/- 0.5ct 3.1752 1.6084 1 0.9536 0.8953 3.0458 1.5635 1 -0.9481 0.9026
.*—» 3 (/) 15.1350 1.2084 0.9536 1 0.8659 14.9744 1.1806 -0.9481 1 -0.8776
a:c 9.1095 0.9064 0.8953 0.8659 1 9.0215 0.8823 0.9026 -0.8776 1o
ro x ,

s-
X R X, s-

X R
E
w +/- 1.0cj 2.9452 1.6127 1 0.9495 0.9073 3.0145 1.5769 1 -0.9473 0.8851

14.9755 1.2073 0.9495 1 0.8770 14.9679 1.1912 -0.9473 1 -0.8635

8.9926 0.9327 0.9073 0.8770 1 8.9883 0.8372 0.8851 -0.8635 1
x ,

s-
X R x ,

s-
X R

+/- 1.5ct 2.9966 1.6636 1 0.9543 0.8984 2.9528 1,5382 1 -0.9505 0.8974

14.9978 1.2236 0.9543 1 0.8788 15.0538 1.1715 -0.9505 1 -0.8798
9.0209 0.9175 0.8984 0.8788 1 8.9926 0.8680 0.8974 -0.8798 1
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Table II.6: Input Process Parameters and Simulated Process Parameters for Run 50 & 51
Run: 50 Run: 51

All Positive Correlation Coefficients Two Negative and One Positive Correlation Coefficients
In

pu
t

Pa
ra

m
et

er
s

Shift Size for 
Simulation

P a P M a P
3 0.06 1 0.7 0.9 3 0.06 1 -0.7 0.9

15 0.12 0.7 1 0.6 15 0.12

h-o1 1 -0.6

9 0.09 0.9 0.6 1 9 0.09 0.9 -0.6 1
x, s-

X R X, s-
X R

+/- 0.25a 3.0010 0.0591 1 0.7133 0.8911 3.0003 0.0599 1 -0.7021 0.8909

15.0003 0.0125 0.7133 1 0.6048 14.9997 0.0124 -0.7021 1 -0.6101

8.9990 0.0892 0.8911 0.6048 1 9.0014 0.08880 0.8909 -0.6101 1
x, s -

X R s-
X R

(/) +/- 0.5a 2.9949 0.0599 1 0.7301 0.9011 2.9983 0.0595 1 -0.7089 0.8936
■ 4 -J3(/) 14.9988 0.0124 0.7301 1 0.6267 15.0004 0.0124 -0.7089 1 -0.5924
XL
c 8.9957 0.0888 0.9011 0.6267 1 8.9959 0.0855 0.8936 -0.5924 1
o
ra x, s-

X R 5 -
X R

E
CO +/- 1,0a 2.9969 0.0629 1 0.6912 0.9077 2.9980 0.0582 1 -0.6907 0.8966

14.9991 0.0124 0.6912 1 0.6117 14.9995 0.0122 -0.6907 1 -0.5846

8.9936 0.0918 0.9077 0.6117 1 8.9943 0.0877 0.8966 -0.5846 1
*/ s-

X R X, s-
X R

+/- 1.5a 3.0008 0.0631 1 0.7457 0.9087 2.9972 0.0592 1 -0.6777 0.9011

15.0008 0.0129 0.7457 1 0.6294 15.0002 0.0117 -0.6777 1 -0.5700
8.9987 0.0967 0.9087 0.6294 1 8.9947 0.0887 0.9011 -0.5700 1
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Table II.7: Input Process Parameters and Simulated Process Parameters for Run 60 & 61
Run: 60 Run: 61

All Positive Correlation Coefficients Two Negative and One Positive Correlation Coefficients

£2 F a P F a PQ)■#_t ■*-»
3  tt) Shift Size for 3 0.06 1 0.2 0.1 3 0.06 1 -0.2 0.1

C 
-  2 (0 

Q.

Simulation 15 0.12 0.2 1 0.15 15 0.12 -0.2 1 -0.15

9 0.09 0.1 0.15 1 9 0.09 0.1 -0.15 1
X, s-

X R X, s-
X R

+/- 0.25a 2.9981 0.0608 1 0.1849 0.1229 2.9941 0.0616 1 -0.1877 0.0185

14.9998 0.0119 0.1849 1 0.1382 15.0004 0.0118 -0.1877 1 -0.1226

8.9958 0.0917 0.1229 0.1382 1 9.0010 0.09016 0.0185 -0.1226 1
X, s-

X R X, s-
X R

(/) +/- 0.5a 3.0005 0.0616 1 0.2197 0.0933 3.0003 0.0564 1 -0.2542 0.1536
3(O 14.9996 0.0118 0.2197 1 0.2266 15.0000 0.0123 -0.2542 1 -0.1502
a:
c 8.9993 0.0902 0.0933 0.2266 1 9.0053 0.0944 0.1536 -0.1502 1o
ro X, s-

X R X, s-
X R

E
CO +/- 1.0a 3.0000 0.0586 1 0.1667 0.0560 3.0012 0.0611 1 -0.1580 0.0712

14.9996 0.0120 0.1667 1 0.1575 14.9998 0.0119 -0.1580 1 -0.1421

8.9956 0.0892 0.0560 0.1575 1 9.0063 0.0874 0.0712 -0.1421 1
x ,

s-
X R x ,

s-
X R

+/- 1.5a 2.9983 0.0560 1 0.1210 0.0911 3.0039 0.0577 1 -0.1042 0.0800

15.0002 0.0112 0.1210 1 0.1633 14.9993 0.0120 -0.1042 1 -0.1368

9.0067 0.0893 0.0911 0.1633 1 9.0058 0.0914 0.0800 -0.1368 1
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Table II.8: Input Process Parameters and Simulated Process Parameters for Run 70 & 71
Run: 70 Run: 71

All Positive Correlation Coefficients Two Negative and One Positive Correlation Coefficients

E F a P F a P
0)13 Q) Shift Size for 0.5 1.6 1 0.7 0.9 0.5 1.6 1 -0.7 0.9

=■ C
-  2 (0 

Cl

Simulation 0.65 1.2 0.7 1 0.6 0.65 1.2 -0.7 1 -0.6

0.25 0.9 0.9 0.6 1 0.25 0.9 0.9 -0.6 1
x, s-

X R X, s-
X R

+/- 0.25a 0.4112 1.5148 1 0.6714 0.8847 0.5659 1.6321 1 -0.6965 0.9004

0.5881 1.2070 0.6714 1 0.5743 0.6976 1.2123 -0.6965 1 -0.6191

0.2009 0.8677 0.8847 0.5743 1 0.2801 0.92480 0.9004 -0.6191 1
X, s-

X R x , s-
X R

CO +/- 0.5a 0.4446 1.6321 1 0.7354 0.9008 0.4933 1.6004 1 -0.7202 0.8991
4—<

3
(0 0.6843 1.2123 0.7354 1 0.6466 0.6533 1.1924 -0.7202 1 -0.6112
a:c 0.2379 0.9248 0.9008 0.6466 1 0.2486 0.9146 0.8991 -0.6112 1o
TO X, s-

X R X, s-
X R

E
W +/- 1.0a 0.5135 1.6255 1 0.7306 0.9086 0.5559 1.5625 1 -0.6787 0.8911

0.6199 1.2279 0.7306 1 0.6302 0.6811 1.1734 -0.6787 1 -0.5843

0.2562 0.9180 0.9086 0.6302 1 0.2752 0.8704 0.8911 -0.5843 1
x, s-

X R s-
X R

+/- 1.5a 0.5413 1.5768 1 0.7113 0.9023 0.5413 1.5768 1 -0.6658 0.9055

0.6528 1.2370 0.7113 1 0.5912 0.6094 1.1652 -0.6658 1 -0.5935
0.2741 0.9070 0.9023 0.5912 1 0.2724 0.9089 0.9055 -0.5935 1
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Table II.9: Input Process Parameters and Simulated Process Parameters for Run 80 & 81
Run: 80 Run: 81

All Positive Correlation Coefficients Two Negative and One Positive Correlation Coefficients

£ F a P F a P
Q)

"3 Q) Shift Size for 0.5 1.6 1 0.2 0.1 0.5 1.6 1 -0.2 0.1
9* t£  co

CD
a.

Simulation 0.65 1.2 0.2 1 0.15 0.65 1.2 -0.2 1 -0.15

0.25 0.9 0.1 0.15 1 0.25 0.9 0.1 -0.15 1
X, s-

X R x, s-
X R

+/- 0.25<j 0.5842 1.5983 1 0.1483 0.2163 0.5601 16163 1 -0.2022 0.1531

0.7021 1.1586 0.1483 1 0.1932 0.6024 1,2223 -0.2022 1 -0.2178

0.2217 0.9033 0.2163 0.1932 1 0.2526 0.86516 0.1531 -0.2178 1
X, s-

X R s-
X R

CO +/- 0.5a 0.4908 1.6163 1 0.1961 0.0855 0.3076 1.5583 1 -0.1413 0.1062
"5CO 0.6148 1.2223 0.1961 1 0.1264 0.6348 1.1519 -0.1413 1 -0.1665
tc
c 0.2673 0.8652 0.0855 0.1264 1 0.2764 0.9137 0.1062 -0.1665 1
o

_ r o x, s-
X R X, 5-

X R
E
(/) +/- 1.0a 0.5935 1.5688 1 0.1971 0.2063 0.4109 1.6096 1 -0.2020 0.0690

0.6890 1.1922 0.1971 1 0.2346 0.7073 1.2373 -0.2020 1 -0.0882

0.2405 0.9353 0.2063 0.2346 1 0.2486 0.8795 0.0690 -0.0882 1
X, s-

X R X, s-
X R

+/- 1.5a 0.4159 1.6040 1 0.2075 0.1116 0.5033 1.6301 1 -0.1609 0,1140

0.5821 1.1958 0.2075 1 0.1976 0.7009 1.2480 -0.1609 1 -0.1072
0.2993 0.8814 0.1116 0.1976 1 0.2749 0.9403 0.1140 -0.1072 1
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Table 11.10: Input Process Parameters and Simulated Process Parameters for Run 90 & 91
Run: 90 Run: 91

All Positive Correlation Coefficients Two Negative and One Positive Correlation Coefficients

£ F a P F o P0)
3  0 ) Shift Size for 0.5 0.06 1 0.7 0.9 0.5 0.06 1 -0.7 0.9

c
-  2 (0 CL.

Simulation 0.65 0.12 0.7 1 0.6 0.65 0.12 -0.7 1 -0.6

0.25 0.09 0.9 0.6 1 0.25 0.09 0.9 -0.6 1
x, s-

X R x , s-
X R

+/- 0.25ct
0.5030 0.0594 1 0.6734 0.9036 0.4985 0.0602 1 -0.6664 0.8881

0.6508 0.0119 0.6734 1 0.5885 0.6496 0.0123 -0.6664 1 -0.5616

0.2553 0.0896 0.9036 0,5885 1 0.2478 0.09036 0.8881 -0.5616 1
X, s-

X R X, s-
X R

</> +/- 0.5o 0.5049 0.0602 1 0.7321 0.9006 0.5025 0.0569 1 -0.7119 0.8894
*—* 

3  tf) 0.6506 0.0123 0.7321 1 0.6321 0.6498 0.0120 -0.7119 1 -0.5975
a:
c 0.2580 0.0904 0.9006 0.6321 1 0.2558 0.0858 0.8894 -0.5975 1o+3<0 *, s-

X R x, s-
X R

B
<55 +/- 1.0a 0.4997 0.0597 1 0.7127 0.9013 0.4955 0.0595 1 -0.6915 0.8968

0.6501 0.0123 0.7127 1 0.6445 0.6505 0.0124 -0.6915 1 -0.5958

0.2494 0.0915 0.9013 0.6445 1 0.2434 0.0871 0.8968 -0.5958 1
X, s-

X R X, s-
X R

+/- 1.5a 0.5015 0.0629 1 0.7126 0.9066 0.4943 0.0620 1 -0.7138 0.8965

0.6503 0.0117 0.7126 1 0.6351 0.6511 0.0121 -0.7138 1 -0.6230
0.2490 0.0953 0.9066 0.6351 1 0.2440 0.0909 0.8965 -0.6230 1
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Table 11.11: Input Process Parameters and Simulated Process Parameters for Run 100 & 101
Run: 100 Run: 101

All Positive Correlation Coefficients Two Nec ative and One Positive Correlation Coefficients

E F a P F a P
Q)

3  0 ) Shift Size for 0.5 0.06 1 0.2 0.1 0.5 0.06 1 -0.2 0.1
-  2  

( 0  
Q.

Simulation 0.65 0.12 0.2 1 0.15 0.65 0.12 -0.2 1 -0.15

0.25 0.09 0.1 0.15 1 0.25 0.09 0.1 -0.15 1
x ,

s-
X R X, S-

X R

+/- 0.25<t 0.4991 0.0586 1 0.2114 0.0582 0.4987 0.0587 1 -0.0959 0.0945

0.6497 0.0115 0.2114 1 0.1532 0.6492 0.0122 -0.0959 1 -0.1385

0.2488 0.0905 0.0582 0.1532 1 0.2509 0.09303 0.0945 -0.1385 1
X, s-

X R X, j -
X R

U) +/- 0.5a 0.4980 0.0587 1 0.1610 0.1021 0.4987 0.0605 1 -0.2106 0.1598
3
(O 0.6501 0.0122 0.1610 1 0.2036 0.6501 0.0119 -0.2106 1 -0.1291

q :

c 0.2569 0.0930 0.1021 0.2036 1 0.2521 0.0879 0.1598 -0.1291 1o
•-C3
CO x ,

s-
X R x ,

s-
X R

E
CO +/-1.0CT 0.4980 0.0641 1 0.2190 0.0895 0.5024 0.0631 1 -0.1693 0.0956

0.6503 0.0123 0.2190 1 0.1804 0.6492 0.0127 -0.1693 1 -0.1383

0.2553 0.0830 0.0895 0.1804 1 0.2518 0.0916 0.0956 -0.1383 1
x , s -

X R X, s-
X R

+/-1.5cr 0.5007 0.0588 1 0.1644 0.1606 0.4997 0.0583 1 -0.1515 0.1149

0.6502 0.0119 0.1644 1 0.2077 0.6493 0.0122 -0.1515 1 -0.2021
0.2524 0.0890 0.1606 0.2077 1 0.2480 0.0876 0.1149 -0.2021 1
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Table III.l: Sample Major Element Control Limits
Simulation

Run
shin
Size

All Po sitive Correlation Coeflicients Simulation
Run

Shirt
Size

Two Negative and One Pos tive Correlation Coefficients
UCL„, LCLui UCLia LCLu] UCLuj LCLio UCLm, t-CLU| OCLm LCUu UCUo LCUo

00

+/- 0.25a 6.6649 -6.6649 1.7158 -1.7158 5.3010 -5.3010 +/- 0.25a 6.5871 -6.5871 2.0456 -2.0456 4.8288 -4.8288
+/- 0.5a 5.4349 -5.4349 1.7856 -1.7856 4.2131 -4.2131 01 +/- 0,5a 6.3076 -6.3076 1.6868 -1.6868 5.0598 -5.0598
+/- 1,0a 6.2777 -6.2777 1.7745 -1.7745 5.1398 -5.1398 +/- 1.0a 6.3465 •6.3465 1.7318 -1.7318 4.9743 -4.9743
+/- 1.5a 5.5597 -5.5597 1.7842 -1.7842 4.4459 -4.4459 +/- 1,5a 5.3137 -5.3137 1.7699 -1.7699 4.2825 •4.2825

10

+/• 0,25a 0.9374 -0.9374 0.9258 •0.9258 0.9196 -0.9196 +/- 0.25a 0.9123 -0.9123 0.9382 -0.9382 0.9077 -0.9077
+/- 0,5a 0.9586 -0.9586 0.9754 -0.9754 0.8984 -0.8984 11 +/- 0.5a 0.9135 •0.9135 0.9200 -0.9200 0.9209 -0.9209
+/-1,0a 0.9223 -0,9223 0.9749 -0.9749 0.9339 -0.9339 +/-1.0o 0.9224 -0.9224 0.9446 -0.9446 0.9475 -0.9475
+/- 1.5a 0.9351 -0.9351 0.9332 -0.9332 0.8914 -0.8914 +/- 1.5a 0.9443 -0.9443 0.9494 -0.9494 0.9361 -0.9361

20

+/- 0.25a 2.6406 -2.6406 1.0159 -1.0159 2.7050 -2.7050 +/- 0.25a 2.1670 -2.1670 0.9859 •0.9859 2.2718 -2.2718
+/-0.5a 2.4524 -2.4524 1.0919 -1.0919 2.6187 -2.6187 21 +/- 0,5o 2.2524 -2.2524 1.0140 -1.0140 2.4165 -2.4165
+/-1.0o 2.5097 -2.5097 1.0331 -1.0331 2.6097 -2.6097 +/-1.0o 2.4464 -2.4464 0.9973 -0.9973 2.5411 -2.5411
+/- 1,5a 2.5392 -2.5392 1.0037 -1.0037 2.6670 -2.6670 +/- 1,5a 2.6130 -2.6130 1.0860 -1.0860 2.7714 -2.7714

30

+/• 0.25a 15.0063 -15.0063 33.1915 -33.1915 11.3681 -11.3681

31

+/- 0.25a 14.5044 -14.5044 33.8263 -33.8263 11.0952 -11.0952
+/- 0.5a 15.9060 -15.9060 38.2234 -38.2234 11.2127 -11.2127 +/-0.5o 13.4393 -13.4393 30.8108 •30.8108 10.3667 -10.3667
+/- 1.0o 13.9101 -13.9101 33.8737 -33.8737 11.5187 -11.5187 +/- 1.0o 15.3152 -15.3152 36.6023 •36.6023 12.5755 -12.5755
+/- 1.5a 14.6108 -14.6108 32.7892 -32.7892 10.8746 -10.8746 +/- 1.5a 16.2398 -16.2398 34.9396 -34.9396 11.6585 -11.6585

40

+/- 0.25a 11.8185 -11.8185 9.4224 -9.4224 5.0905 -5.0905 +/• 0.25a 10.9922 -10.9922 8.6223 -8.6223 4.5492 -4.5492
+/- 0.5o 12.3784 -12.3784 9.8202 -9.8202 4.4801 -4.4801 41 +/- 0.5a 11.0933 -11.0933 8.9440 -8.9440 4.8844 -4.8844
+/- 1.0a 11.8625 -11.8625 9.0880 -9.0880 5.0564 -5.0564 +/- 1.0a 10.3773 -10.3773 8.8367 -8.8367 4.1903 -4.1903
+/- 1,5a 11.9939 •11.9939 10.1547 -10.1547 4.6988 -4.6988 +/- 1.5a 11.0153 -11.0153 9.4918 -9.4918 4.7091 -4.7091

50

+/-0.25a 5.5799 -5.5799 1.8127 -1.8127 4.3216 -4.3216

51

+/- 0.25a 5.3061 -5.3061 1.7432 -1,7432 4.2859 -4.2859
+/- 0.5a 6.1649 -6.1649 1.9096 -1.9096 4.7416 -4.7416 +/- 0.5a 5.8065 -5.8065 1.8032 -1.8032 4.4505 -4.4505
+/- 1.0a 6.0153 -6.0153 1.6934 •1.6934 5.0199 -5.0199 +/- 1.0a 5.7316 -5.7316 1.7068 -1.7068 4.5530 -4.5530
+/- 1.5a 7.0966 -7.0966 2.0482 -2.0482 5.2173 -5.2173 +/-1.5o 5.9521 -5.9521 1.6580 -1.6580 4.7676 -4.7676

60

+/- 0.25a 0.9224 -0.9224 0.9262 -0.9262 0.9082 -0.9082

61

+/- 0.25a 0.9142 -0.9142 0.9278 -0.9278 0.8955 -0.8955
+/- 0.5a 0.9287 -0,9287 0.9704 -0.9704 0.9317 -0.9317 +/- 0.5a 0.9569 -0.9569 0.9558 •0.9558 0.9157 -0.9157
♦/- 1.0o 0.9080 -0.9080 0.9282 -0.9282 0.9053 -0.9053 +/- 1.0a 0.9068 -0.9068 0.9208 •0.9208 0.9024 -0.9024
+/-1,5a 0.8999 -0.8999 0.9168 -0.9168 0.9110 •0.9110 +/- 1.5o 0.8957 -0.8957 0.9069 -0.9069 0.9028 -0.9028

70

+/- 0.25a 4.9712 -4.9712 1.6111 -1.6111 4.0737 -4.0737

71

+/- 0.25a 5.5869 -5.5869 1.7139 -1.7139 4.6647 -4.6647
+/- 0,5a 5.9488 -5.9488 1.9267 -1.9267 4.6932 -4.6932 +/- 0.5a 6.0783 -8.0783 1.8593 -1.8593 4.6696 -4.6696
+/- 1.0a 6.6296 -6.6296 1.9187 -1.9187 5.1267 -5.1267 +/- 1.0a 5.2472 -5.2472 1.6413 -1.6413 4.2975 -4.2975
+/-1,5a 6.4293 -6.4293 1.8367 -1.8367 4.8829 -4.8829 +/• 1.5a 5.7045 -5.7045 1.5856 -1.5856 4.9031 -4.9031

80

+/-0.25a 0.9369 -0.9369 0.9277 -0.9277 0.9518 -0.9518

81

+/-0.25a 0.9317 -0.9317 0.9552 -0.9552 0.9381 -0.9381
+/-0.5o 0.9209 -0.9209 0.9290 -0.9290 0.8998 -0.8998 +/- 0.5o 0.9065 •0.9065 0.9218 -0.9218 0.9137 -0.9137
+/-1.0o 0.9443 -0.9443 0.9567 -0.9567 0.9604 -0.9604 +/- 1.0o 0.9220 •0.9220 0.9248 -0.9248 0.8914 -0.8914
+/- 1.5a 0.9267 -0.9267 0.9523 -0.9523 0.9228 -0.9228 +/- 1.5o 0.9143 -0.9143 0.9129 -0.9129 0.9010 •0.9010

90

+/-0.25a 5.7676 -5.7676 1.6200 -1.6200 4.8231 -4.8231

91

+/- 0.25a 5.1799 -5.1799 1.5989 -1.5989 4.2065 •4.2065
+/- 0.5a 6.0935 -6.0935 1.9168 -1.9168 4.7092 -4.7092 +/- 0.5a 5.5693 -5.5693 1.8105 -1.8105 4.2720 -4.2720
+/- 1.0a 5.5864 -5.5864 1.7927 -1.7927 4.7015 -4.7015 +/- 1.0a 5.6008 -5.6008 1.7000 -1,7000 4.5312 -4.5312
+/- 1.5a 6.0097 -6.0097 1.7945 -1.7945 4.9576 -4.9576 +/- 1.5a 5.6242 •5.6242 1.8034 -1.8034 4.5087 -4.5087

100

+/- 0.25a 0.9239 -0.9239 0.9429 -0.9429 0.9038 -0.9038

101

+/- 0.25a 0.8962 -0.8962 0.9056 -0.9056 0.9054 -0.9054
+/- 0.5o 0.9101 •0.9101 0.9396 -0.9396 0.9249 •0.9249 +/- 0.5a 0.9405 -0.9405 0.9320 -0.9320 0.9140 -0.9140
+/-1,0a 0.9289 -0.9289 0.9525 -0.9525 0.9141 -0.9141 +/- 1.0a 0.9130 -0.9130 0.9223 -0.9223 0.9041 -0.9041
+/- 1.5a 0.9223 -0.9223 0.9390 -0.9390 0.9379 •0.9379 +/- 1.5a 0.9096 -0.9096 0.9358 -0.9358 0.9265 -0.9265

nformation for 22 Simulation Runs

t-nN>
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Appendix IV. Analysis o f Simulation Experiment for the Study of 
the Effects o f Sample Size and Num ber of Samples
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Table IV. 1: Biasrep% Information for Run 110

R ep  =  25 Mu Mzz M33
n k M ean S td . Dev. R a n g e M ean S td . Dev. R ange M ean S td . Dev. R ange

6 25 5.38% 2.81% 11.62% 4.92% 1.90% 6.38% 5 .31% 3.26% 13.52%
6 35 3.34% 2.74% 11.65% 4.49% 1.52% 5.93% 2 .44% 1.19% 4.87%
6 50 1.88% 1.07% 3.47% 2.25% 1.49% 6.02% 1.71% 2.27% 9.12%
6 75 1.49% 1.60% 7.47% 2.02% 0.95% 4.58% 2 .26% 1.87% 9.79%

6 100 1.19% 0.62% 2 .31% 1.51% 1.28% 6.76% 2 .02% 1.01% 3.56%
6 250 1.13% 0.86% 2 .91% 1.20% 0.68% 2.59% 1.06% 0.68% 3.24%

6 500 1.12% 1.37% 5.63% 0.81% 0.40% 1.60% 1 .20% 1.24% 5.23%
6 750 0.70% 0.82% 3 .05% 0.36% 0.37% 1.51% 1.01% 0.42% 1.65%
6 1000 0.55% 0.39% 1.79% 0.66% 0.53% 1.90% 0 .93% 0.95% 3.72%

8 25 2.65% 2.30% 9 .98% 2.69% 2.66% 9.89% 2 .74% 2.40% 10.63%
8 35 2.52% 1.64% 5 .97% 1.39% 1.03% 4.70% 3.08% 3.54% 18.74%
8 50 2.02% 2.41% 12.19% 1.51% 1.65% 6.73% 2 .22% 1.62% 8.24%
8 75 1.45% 0.87% 2 .73% 1.27% 0.88% 4.44% 1.57% 1.18% 5.72%
8 100 1.35% 0.90% 4 .84% 1.35% 1.13% 3.82% 1.80% 0.94% 5.33%
8 250 1.20% 1.12% 3 .81% 1.08% 1.38% 5.28% 1.01% 1.17% 3.83%
8 500 0.97% 0.66% 3.11% 0.52% 0.56% 1.92% 1 .05% 0.93% 3.20%
8 750 0.77% 1.16% 4 .43% 0.47% 0.35% 1.82% 0 .84% 1.06% 4.39%
8 1000 0.59% 0.60% 1.88% 0.23% 0.23% 1.03% 0 .48% 0.47% 2.44%

10 25 2.71% 3.78% 13.58% 2.71% 3.12% 13.52% 3 .15% 2.06% 11.03%
10 35 1.71% 1.03% 4.61% 2.76% 1.09% 5.61% 2 .68% 1.92% 7.85%
10 50 1.58% 1.08% 5 .65% 1.47% 1.02% 5.16% 2 .0 2 % 2.36% 12.02%
10 75 1.47% 0.96% 4.31% 1.53% 1.66% 5.38% 1.72% 0.73% 2.57%
10 100 1.30% 1.45% 7.06% 1.31% 1.28% 5.88% 1.31% 0.91% 4.00%
10 250 1.35% 2.59% 13 .24% 1.29% 0 .97% 4.83% 0 .9 3 % 0.96% 3.86%
10 500 0.44% 0.37% 1.19% 0.86% 0.54% 2.27% 1.11% 0.79% 3.22%
10 750 0.65% 0.81% 3.11% 0.47% 0.62% 2.98% 0 .58% 0.68% 2.37%
10 1000 0.27% 0.35% 1.77% 0.21% 0.21% 0.83% 0.34% 0.28% 1.12%

15 25 2.38% 2.22% 9.40% 2.42% 2.27% 9.24% 2 .12% 1.79% 6.59%
15 35 2.50% 1.54% 6.40% 1.56% 2.10% 7.93% 1.70% 1.33% 5.10%
15 50 1.32% 0.86% 3.54% 1.21% 0.88% 4.38% 1.31% 1.29% 6.14%
15 75 0.86% 0.69% 2.49% 1.10% 0.41% 1.77% 1.19% 0.50% 1.94%
15 100 0.79% 0.48% 2.08% 0.55% 0.64% 3.22% 1.03% 0.78% 3.45%
15 250 0.49% 0.34% 1.25% 0.38% 0.37% 1.47% 0 .79% 0.76% 2.83%
15 500 0.60% 1.00% 3.86% 0.40% 0.36% 1.64% 0 .54% 0.81% 2.78%
15 750 0.33% 0.59% 2.88% 0.34% 0.24% 0.75% 0 .4 5 % 0.80% 3.96%
15 1000 0.33% 0.41% 2 .16% 0.41% 0.56% 2.38% 0 .5 5 % 0.84% 3.88%

(I , = 3, CTi =  1.6; (I2 = 15, az = 1.2; p3 =  9, ct3 =  0.9; p,2 = 0.7, p l3 =  0.9, p^ = 0.6
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Table IV. 2: Biasrep% Information for Run 120

R ep  =  25 M u M22 M33

n k M ean S td . Dev. R an g e M ean Std. Dev. R an g e Mean S td . Dev. R ange

6 25 1.34% 0.80% 3 .92% 2.95% 1.24% 4 .82% 1.57% 1.35% 5.07%

6 35 1.45% 0.89% 4 .88% 1.00% 0.92% 4 .77% 0.89% 0.67% 2.28%

6 50 0 .77% 0.60% 2.11% 0.94% 0.71% 2.03% 0.43% 0 .40% 1.66%
6 75 0.36% 0.18% 0 .69% 0.53% 0.38% 1.35% 1.01% 0.23% 0.96%

6 100 0.34% 0.24% 0.89% 0.19% 0.16% 0.62% 0.24% 0.27% 1.21%
6 250 0 .38% 0.18% 0.73% 0.32% 0.20% 0.66% 0.34% 0.28% 1.26%
6 500 0.15% 0.14% 0 .47% 0.32% 0.23% 1.01% 0.26% 0.20% 0.74%
6 750 0.24% 0.37% 1.88% 0.37% 0.21% 0.81% 0.10% 0.11% 0.48%
6 1000 0.08% 0.11% 0 .44% 0.14% 0.08% 0.34% 0.06% 0.04% 0.17%

8 25 1.19% 0.76% 3.87% 1.37% 1.69% 7.97% 1.12% 0.70% 2.22%
8 35 1.09% 1.32% 4.56% 1.18% 1.62% 5.26% 0.45% 0.20% 0.76%
8 50 0.59% 0.43% 1.42% 1.21% 0.76% 2.73% 0.34% 0.41% 1.73%
8 75 0.44% 0.50% 2 .60% 0.49% 0.39% 1.87% 0.64% 0.39% 1.83%
8 100 0.25% 0.34% 1.35% 0.21% 0.23% 0.92% 0.20% 0.22% 0.89%
8 250 0.22% 0.14% 0.48% 0.26% 0.23% 0.82% 0.42% 0.20% 0.96%
8 500 0.22% 0.35% 1.29% 0.14% 0.17% 0.63% 0.24% 0.18% 0.76%

8 750 0.11% 0.06% 0 .27% 0.12% 0.20% 0.91% 0.24% 0.27% 1.15%
8 1000 0.08% 0.07% 0.31% 0.08% 0.07% 0.33% 0.04% 0.03% 0.10%

10 25 0.54% 0.47% 1.66% 1.06% 0.54% 2.15% 1.97% 0.77% 2.84%
10 35 0.30% 0.54% 2 .02% 0.77% 0.42% 2.31% 0.51% 0.34% 1.57%

10 50 0.36% 0.40% 1.70% 0.44% 0.48% 1.96% 0.35% 0.42% 2.12%
10 75 0.42% 0.35% 1.81% 0.33% 0.44% 1.87% 0.35% 0.45% 1.40%
10 100 0.39% 0.26% 1.04% 0.24% 0.13% 0.51% 0.10% 0.09% 0.28%
10 250 0.45% 0.43% 1.39% 0.28% 0.32% 1.13% 0.22% 0.11% 0.52%
10 500 0.27% 0.14% 0.63% 0.20% 0.12% 0.56% 0.28% 0.27% 1.34%
10 750 0.12% 0.13% 0.51% 0.20% 0.10% 0.45% 0.07% 0.05% 0.25%
10 1000 0.08% 0.16% 0.67% 0.17% 0.11% 0.34% 0.12% 0.06% 0.25%

15 25 0.85% 0.20% 0.99% 0.36% 0.31% 1.15% 0.34% 0 .37% 1.66%
15 35 0.37% 0.31% 1.37% 0.93% 0.50% 1.65% 0.31% 0.15% 0.52%
15 50 0.38% 0.33% 1.74% 0.43% 0.41% 1.48% 0.39% 0.50% 1.61%
15 75 0.52% 0.20% 0 .91% 0.32% 0.22% 0.76% 0.20% 0.14% 0.63%
15 100 0.17% 0.18% 0.61% 0.30% 0.20% 0.72% 0.22% 0.23% 1.09%
15 250 0.14% 0.13% 0.51% 0.21% 0.16% 0.68% 0.14% 0.15% 0.60%
15 500 0.10% 0.08% 0.23% 0.20% 0.10% 0.52% 0.17% 0.10% 0.45%
15 750 0.12% 0.17% 0.73% 0.09% 0.06% 0.28% 0.08% 0.06% 0.28%
15 1000 0.06% 0.05% 0.20% 0.10% 0.10% 0.45% 0.06% 0 .11% 0.51%

M-i =  3, CT| = 1.6; |i2  — 15, a 2 -  1.2; (13 — 9, (j3 — 0.9; p t2  — 0.2, p [3 — 0.1, p^ — 0.15
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Table IV. 3: Biasrep% Information for Run 130

R ep =  25 M a M33

n k M ean S td . Dev. R ange M ean Std. Dev. R an g e M ean S td . Dev. R ange

6 25 4.55% 3.07% 12.77% 3.97% 1.54% 5.75% 4.91% 3.02% 12.28%
6 35 1.66% 2.56% 10.08% 1.54% 1.04% 3.09% 2.66% 1.15% 5.01%
6 50 1.16% 1.27% 5.37% 1.55% 1.12% 5.82% 1.86% 0.88% 2.96%

6 75 1.47% 1.11% 3.95% 0.84% 0.61% 2.09% 1.64% 1.86% 6.75%
6 100 1.83% 0.92% 3.09% 0.23% 0.27% 0.97% 1.72% 1.38% 5.47%
6 250 1.05% 0.60% 2.47% 0.57% 0.32% 1.20% 1.13% 0.63% 2.47%
6 500 1.05% 1.23% 5.00% 0.21% 0.11% 0.37% 1.11% 1.11% 4.54%
6 750 0.82% 0.70% 2.85% 0.46% 0.29% 0.96% 0.89% 0.88% 3.40%
6 1000 0.78% 0.46% 2.10% 0.45% 0.32% 1.43% 0.79% 0.33% 1.51%

8 25 2.33% 1.73% 7.52% 1.75% 2.20% 10.14% 2.91% 3.17% 16.56%
8 35 2.50% 2.70% 14.11% 1.65% 2.15% 6.96% 1.96% 0.96% 5.53%
8 50 1.78% 0.95% 5.10% 1.69% 1.04% 3.79% 2.15% 1.73% 7.94%

8 75 1.54% 1.79% 8.11% 0.68% 0.48% 2.07% 1.46% 1.00% 4.59%
8 100 1.41% 0.83% 2.81% 0.26% 0.33% 1.31% 1.16% 1.27% 5.43%
8 250 0.99% 0.99% 3.25% 0.38% 0.34% 1.24% 0.64% 0.74% 2.70%
8 500 0.56% 0.36% 1.40% 0.19% 0.31% 1.38% 0.38% 0.38% 1.84%
8 750 0.71% 1.04% 4.03% 0.21% 0.30% 1.13% 0.73% 0.93% 3.76%
8 1000 0.81% 0.78% 2.53% 0.12% 0.09% 0.39% 1.03% . 0 .98% 3.49%

10 25 2.75% 1.70% 8.61% 1.64% 0.93% 3.88% 3.74% 1.62% 6.74%
10 35 2.42% 2.02% 8.15% 1.07% 0.58% 3.04% 2.28% 1.97% 8.01%
10 50 2.00% 1.82% 9.13% 0.70% 0.85% 3.44% 1.56% 1.91%  1 9.36%
10 75 1.38% 0.74% 3.07% 0.51% 0.64% 2.60% 1.43% 0.92% 4.15%
10 100 1.43% 0.61% 2.90% 0.36% 0.20% 0.82% 0.90% 0.93% 3.54%
10 250 1.07% 1.16% 5.20% 0.44% 0.52% 1.81% 1.55% 0.65% 2.22%
10 500 0.69% 0.61% 2.15% 0.29% 0.17% 0.74% 0.97% 0.83% 3.52%
10 750 0.59% 0.68% 2.46% 0.30% 0.17% 0.69% 0.51% 0.70% 2.32%
10 1000 0.26% 0.28% 1.47% 0.24% 0.15% 0.48% 0.34% 0.28% 1.15%

15 25 2.04% 1.64% 5.90% 1.37% 0.80% 2.64% 1.50% 1.13% 4.49%
15 35 1.27% 0.92% 4.68% 0.53% 0.43% 1.61% 1.57% 1.46% 5.15%
15 50 1.58% 1.58% 6.82% 0.66% 0.61% 2.28% 1.47% 1.36% 6.37%
15 75 0.69% 0.50% 2.18% 0.45% 0.32% 1.09% 0.93% 0.58% 2.33%
15 100 0.92% 0.56% 2.64% 0.41% 0.29% 1.04% 0.95% 0.72% 3.06%
15 250 0.67% 0.62% 2.40% 0.27% 0.22% 0.91% 0.67% 0.69% 2.59%
15 500 0.54% 0.83% 2.92% 0.31% 0.15% 0.76% 0.51% 0.79% 2.59%
15 750 0.39% 0.74% 3.56% 0.12% 0.09% 0.39% 0.42% 0.82% 3.97%
15 1000 0.38% 0.58% 2.90% 0.16% 0.14% 0.65% 0.51% 0.75% 3.59%

p., = 3, cr, = 1.6; p2 =  15, cy2 = 1.2; n3 = 9, cr3 =0.9; p12 =  0.3, pI3 =0.8, p23 =  0.35
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Table IV. 4: Biasrep% Information for Run 140

Rep = 25 Mi, M22 M33

n k Mean Std. Dev. Range Mean Std. Dev. Range Mean Std. Dev. Range

6 25 7 .65% 2.24% 8.91% 4.85% 2.59% 13.63% 2.20% 3.58% 16.44%

6 35 3 .93% 2.37% 10.13% 6.59% 2.33% 9.95% 7.00% 2.72% 14.26%

6 50 3.08% 2.02% 6.87% 2.33% 1.67% 5.60% 2.15% 1.19% 5.11%

6 75 2.54% 2.71% 14.00% 1.75% 1.27% 4.39% 1.42% 0.95% 3.57%

6 100 1.20% 1.00% 4.95% 1.42% 0.97% 3.28% 2.61% 1.42% 6.05%

6 250 1.21% 0.67% 2.56% 1.56% 0.95% 3.63% 1.52% 0.87% 3.85%

6 500 1.54% 0.90% 4.88% 1.82% 0.75% 3.49% 1.16% 0.78% 4.15%

6 750 1.29% 0.67% 3.01% 1.43% 0.80% 2.75% 1.22% 0.67% 2.25%

6 1000 0 .88% 0.99% 3.25% 0.69% 0.45% 1.99% 0.68% 0.49% 1.86%

8 25 4 .31% 1.86% 6.58% 3.10% 2.91% 13.56% 4.41% 4.66% 14.61%

8 35 2 .04% 2.98% 13.80% 1.74% 2.64% 10.67% 3.66% 1.24% 5.43%

8 50 1.51% 0.96% 2.95% 3.23% 1.60% 6.83% 2.81% 2.08% 10.37%

8 75 1.27% 1.93% 10.14% 1.76% 1.86% 9.14% 1.53% 2.54% 9.84%

8 100 1.09% 0.98% 4.61% 1.49% 1.11% 4.89% 1.62% 1.07% 5.46%

8 250 1.66% 0.79% 3.66% 2.64% 1.03% 4.40% 2.18% 0.99% 3.36%

8 500 0.85% 0.62% 3.37% 0.82% 0.72% 2.89% 0.72% 0.70% 2.58%

8 750 0 .82% 0.97% 3.84% 0.70% 0.70% 2.52% 0.65% 0.40% 1.31%

8 1000 0 .61% 0.33% 1.22% 0.57% 0.47% 2.06% 0.49% 0.59% 3.07%

10 25 4 .61% 2.72% 11.31% 3.19% 3.42% 16.12% 3.52% 2.55% 10.53%

10 35 2 .94% 4.05% 20 .32% 4.07% 3.68% 15.76% 2.42% 2.86% 12.73%

10 50 2.18% 1.62% 5.93% 1.74% 0.91% 3.48% 1.88% 2.53% 7.13%

10 75 1.36% 1.85% 9.03% 1.41% 1.13% 4.24% 1.28% 2.79% 14.13%

10 100 1 .69% 0.91% 3.00% 1.39% 2.83% 14.53% 1.54% 0.71% 2.14%

10 250 0 .93% 0.70% 2.89% 0.64% 0.75% 3.19% 0.60% 0.82% 4.06%

10~ 500 0 .69% 0.52% 2.66% 0.80% 0.44% 2.13% 0.83% 0.57% 3.26%

10 750 0 .59% 0.64% 2.09% 0.65% 0.68% 2.33% 0.95% 0.96% 4.91%

10 1000 0 .56% 0.73% 3.25% 0.58% 0.77% 2.71% 0.36% 0.51% 2.14%

15 25 2 .82% 1.76% 5.54% 2.34% 1.43% 4.55% 2.82% 1.40% 4.64%

15 35 1 .58% 1.55% 4.83% 1.74% 1.70% 7.80% 1.27% 1.71% 7.73%

15 50 1.52% 0.74% 3.11% 1.29% 1.02% 3.58% 1.16% 1.71% 8.41%

15 75 1 .10% 1.86% 8.19% 1.27 % 1.11% 4.36% 1.61% 1.45% 5.80%

15 100 1.00% 1.05% 3.16% 1.13% 1.24% 4.23% 1.56% 1.11% 4.33%

15 250 0 .76% 0.77% 2.62% 0.82% 1.42% 5.90% 1.16% 1.54% 6.02%

15 500 0 .62% 0.68% 3.06% 0.64% 0.71% 2.74% 0.71% 1.25% 5.89%

15 750 0 .76% 0.71% 3.46% 0.50% 0.95% 4.68% 0.52% 0.65% 2.95%

15 1000 0 .31% 0.45% 2.35% 0.53% 0.57% 2.97% 0.35% 0.50% 2.15%

Pt = 3 , CTt =  1.6; (I2 =  15, a 2 =  1.2; p 3 =  9, cr3 = 0 .9 ; p 12 =  0.85, p I3 = 0 .4 , p ^  = 0 .8
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Table IV. 5: Biasrep% Information for Run 150

R ep = 25 Mn Mzz M 3 3

n k M ean S td . Dev. R ange M ean Std. Dev. R an g e M ean S td . Dev. R ange

6 25 7.33% 2.74% 14.25% 9.06% 2.76% 12.12% 5.47% 3.05% 12.22%

6 35 4.11% 4.38% 16.55% 3.02% 1.56% 5.00% 2.59% 1.22% 4.68%

6 50 3.05% 1.29% 6.12% 2.32% 2.43% 10.56% 1.92% 0.95% 3.09%

6 75 3.89% 1.65% 5.99% 3.12% 0.90% 4.39% 1.68% 2.03% 7.87%

6 100 2.48% 0.79% 2.96% 2.14% 2.26% 6.71% 1.83% 1.61% 8.04%

6 250 1.15% 0.74% 2.58% 1.35% 0.76% 2.90% 1.21% 0.68% 2.96%

6 500 0.52% 0.66% 2.38% 0.59% 0.57% 2.55% 1.23% 1.20% 4.97%

6 750 0.68% 0.95% 3.94% 0.67% 0.74% 2.26% 0.79% 0.88% 3.41%

6 1000 0.48% 0.36% 1.48% 0.51% 0.44% 1.63% 0.86% 0.40% 1.80%

8 25 4.53% 3.62% 10.80% 3.52% 2.76% 12.00% 2.96% 3.40% 17.68%

8 35 1.35% 1.31% 4.36% 1.24% 1.00% 3.58% 2.45% 1.91% 8.61%

8 50 1.46% 1.04% 3.80% 2.52% 2.01% 6.87% 1.54% 1.16% 5.57%

8 75 2.31% 1.19% 4.88% 2.48% 0.70% 3.07% 1.69% 1.27% 5.34%

8 100 0.85% 0.99% 4.49% 0.94% 1.04% 3.83% 1.84% 0.92% 5.24%

8 250 0.93% 0.59% 3.18% 1.15% 1.28% 4.43% 0.82% 1.02% 4.19%

8 500 1.49% 1.34% 5.51% 0.97% 1.10% 4.28% 1.04% 0.98% 3.42%

8 750 0.50% 0.71% 2.66% 0.33% 0.31% 1.15% 0.75% 0.85% 3.02%

8 1000 0.52% 0.50% 2.36% 0.79% 1.20% 5.56% 0.48% 0.39% 2.00%

10 25 2.08% 2.33% 11.88% 2.36% 2.78% 9.66% 3.21% 2.08% 11.00%

10 35 3.50% 2.55% 11.75% 2.90% 1.94% 8.91% 2.78% 2.17% 8.91%

10 50 1.79% 2.11% 7.57% 4.11% 3.56% 11.86% 1.62% 1.93% 9.51%

10 75 1.59% 0.92% 3.19% 1.76% 1.44% 5.38% 1.43% 0.96% 3.86%

10 100 1.78% 2.02% 10.48% 1.56% 1.30% 6.84% 1.69% 0.73% 2.61%
10 250 1.37% 1.78% 6.43% 1.37% 1.43% 4.81% 1.01% 0.83% 3.41%

10 500 0.60% 0.56% 2.59% 0.46% 0.36% 1.29% 0.92% 0.94% 3.58%

10 750 0.47% 0.97% 4.30% 0.67% 0.83% 4.18% 0.55% 0.75% 2.55%

10 1000 0.37% 0.27% 0.92% 0.30% 0.37% 1.38% 0.37% 0.30% 1.12%

15 25 3.58% 2.10% 9.38% 2.52% 1.17% 4.32% 1.72% 1.28% 4.82%

15 35 1.87% 1.83% 9.04% 2.37% 3.03% 11.82% 1.84% 1.53% 5.50%
15 50 1.27% 0.86% 2.86% 1.83% 1.70% 6.04% 1.43% 1.35% 6.42%

15 75 0.67% 0.68% 3.56% 0.78% 1.00% 5.05% 1.04% 0.56% 2.03%

15 100 0.88% 0.41% 1.68% 0.94% 0.74% 3.12% 0.93% 0.74% 3.27%

15 250 1.14% 0.74% 3.13% 0.65% 0.64% 2.65% 0.77% 0.78% 2.87%

15 500 0.51% 1.13% 5.06% 0.75% 0.84% 4.22% 0.53% 0.85% 2.81%
15 750 0.31% 0.34% 1.45% 0.43% 0.45% 1.88% 0.44% 0.83% 4.06%
15 1000 0.40% 0.44% 1.64% 0.44% 0.35% 1.32% 0.54% 0.80% 3.81%

JJ-1 =  3, cr, =  1.6; \iz =  15, cr2 =  1.2; p 3 = 9, cr3 = 0.9; p 12=0.95, p]3 =0.9, p ^  =0.875
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Appendix V. Simulation Study o f Bootstrap Percentile Control 
Limits for Major Elements
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V. 1 Simulation Study Design

To study the Bootstrap Percentile Control limits, the following simulation study is 

designed to evaluate how the total number of observations (n x k ) and the size of resample will 

effect on the estimates of the major element control limits. The study include the following 

steps.

1. Choose the process with the correlation structure, standard deviations, and means 

are listed below.

"  1 0.7 0.9' "1.6' ' 3 '

Roo ~ 0.7 1 0.6 1.2
’ ^ K o o  ~ 15

.°-9 0.6 1 0.9 _9

2. Use the process parameters chosen above to simulate the in-control sample data 

according to the design of sample size, number of sample size, and bootstrap 

resampling size at different levels, which are listed in Table V.l.

3. Replicate each pool of the total observations from the in-control process sample 

data A times that is also listed in the Table V.l.

4. Use the replicated data pool to resample B times of size n, and calculated the 

sample major elements for B samples.

5. Compute the control limits by percentile method and estimated by the chi-square 

distribution of sample major elements.
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6. Calculated Bias% of the percentile control limits from the sample major elements 

control limits calculated from chi-square distribution.

Table V.l Sampling Plan for the Simulated Study

n K B A

N o
S am ple  Size n u m b er o f  

sam ples
R esam ples N o  o f  

R eplicates
1 6 25 1000 40
2 6 25 1500 60
3 6 25 2000 80
4 6 25 2500 100
5 6 50 1000 20
6 6 50 1500 30
7 6 50 2000 40
8 6 50 2500 50
9 8 25 1000 40
10 8 25 1500 60
11 8 25 2000 80
12 8 25 t  2500 100
13 8 50 1000 20
14 8 50 1500 30
15 8 50 2000 40
16 8 50 2500 50

V.2 SAS Program for Bootstrap Percentile Control Limits of Major Elements

The original SAS program for Bootstrap Resampling is written in SAS/MACRO 

language and can be obtained from the user support documents supplied by SAS Institute Inc. 

The original program is modified to accommodate the purposes of computing the sample 

major elements and percentile control limits for the major elements. The coding of the 

program is relatively long; therefore, it is not listed in this appendix. However, interested 

reader can obtain the original program from the web site address listed below, or contact the 

author for the modified program.

http:Wwww.sas.com/techsup/dowload/stat/jackboot.sas
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V.3 Study Results

Chi-Square Control Limits for Sample Major Elements
n k M11_UCL M22JJCL M33JJCL
6 25 5.0174 1.5761 4.1401
8 25 4.4436 1.4190 3.4032
6 50 5.7124 1.5120 4.6807
8 50 4.1447 1.3910 3.2012

Bootstrap Percentile Control Limits for Major Elemnts
Resample (B)=1000 Bias%

n k M 11 UCL M 22 UCL M33 UCL (M11 ucl) (M22 ucl) (M33 ucl)

6 25 5.7239 1.7931 4.5556 14.08% 13.77% 10.04%
8 25 4.9077 1.2435 3.8257 10.44% 12.37% 12.41%
6 50 6.1043 1.6250 4.9337 6.86% 7.47% 5.40%
8 50 4.3015 1.4502 3.3167 3.78% 4.26% 3.61%

Resam pie (B)=1500 Bias%
n k M 11 UCL M 22 UCL M33 UCL (M11 ucl) (M22 ucl) (M33 ucl)

6 25 5.3798 1.6564 4.3626 7.22% 5.10% 5.37%
8 25 4.7422 1.4986 3.6189 6.72% 5.61% 6.34%
6 50 6.0015 1.5751 4.8928 5.06% 4.18% 4.53%
8 50 3.9587 1.3559 3.2763 4.49% 2.53% 2.35%

Resam pie (B)=2000 Bias%
n k M 11 UCL M 2 2  UCL M33 UCL (M11 ucl) (M22 ucl) (M33 ucl)

6 25 5.1578 1.6528 4.2415 2.80% 4.87% 2.45%
8 25 4.5897 1.4652 3.4744 3.29% 3.26% 2.09%
6 50 5.8258 1.5352 4.7888 1.98% 1.53% 2.31%
8 50 4.0985 1.4115 3.1545 1.11% 1.47% 1.46%

Resam pie (B)=2500 Bias%
n k M 11 UCL M 22 UCL M33 UCL (M u ucl) (M22 ucl) (M33 ucl)

6 25 5.1175 1.5996 4.2425 1.99% 1.49% 2.47%
8 25 4.4988 1.3959 3.5238 1.24% 1.63% 3.54%
6 50 5.8354 1.4846 4.6087 2.15% 1.81% 1.54%
8 50 4.1678 1.3815 3.1987 0.56% 0.68% 0.08%
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